Year 11 Science GCSE Revision – CHEMISTRY (PAPER 1)

Chemistry only content is the extra work that separate science students have studied

All support resources (specimen exam papers, mark schemes, powerpoints, summary sheets, core practicals) can be found on the reference drive at N:\Reference\Science\NEW AQA GCSE

Revision should be checked against syllabus content (different for TRIOLOGY and separate CHEMISTRY) at N:\Reference\Science\NEW AQA GCSE\syllabus content (chemistry)

Make sure you **revise the required practicals** properly. These are more likely to come up on the examination papers

Week	Торіс	Key Ideas	Topics for possible longer answer
Beginning			responses
Week 1	C1 atomic	Atoms, elements, mixtures and	Development of periodic table
3 rd March	structure and	compounds	(Mendeleev's improvements)
	periodic table	Development of model of the atom	Plum pudding vs nuclear model of the atom (Rutherford's evidence)
		Atomic structure and electron	
		configuration	Explain trend in reactivity of elements in group 1, linked to electron structure (or
		Calculating relative atomic mass, Ar for isotopes	group 7 - opposite trend)
			Use specimen papers and summary
		Development of periodic table (Mendeleev)	sheets on the reference drive for more ideas
		Properties of elements in group 0, 1	
Chemistry only content		and 7, and the name of each group	Dreparties of transition motals compared
Chemistry	only content	Properties of transition metals	Properties of transition metals compared to group 1 metals
Week 2 10 th	C2	Ionic bonding	Explain (or compare) properties of
-	structure		materials linked to structure and
March	and bonding	Covalent bonding - simple molecules and dot and cross diagrams	bonding, eg. for sodium chloride (ionic), chlorine (simple covalent molecular), sodium (metallic), diamond, graphite,
		Covalent bonding - macromolecules like diamond, sand, graphite, graphene and fullerenes	graphene (macromolecular covalent) etc. linked to melting/boiling point and electrical conductivity
		Metallic bonding and alloys	Evaluate different methods for modelling structures eg. pros/cons of dot and cross
		Properties of each related to structure and bonding - be able to describe and explain melting/boiling points and	diagrams vs ball and stick for covalent molecules
		electrical conductivity in terms of structure and bonding	Use specimen papers and summary sheets on the reference drive for more ideas
		States of matter (particle theory) and state symbols	

Use your login to My GCSE Science to support your learning https://www.my-gcsescience.com/

Chemistry	only content	Nanoparticles (properties and uses)	Evaluate use of nanoparticles (pros/cons)
Week 3 17 th March	C3 quantitative chemistry	Conservation of mass and balanced equations Relative formula mass, M _r Uncertainty	Explain how reactions that appear to involve a change in mass may still observe the conservation of mass rule eg those where a reactant or product is a gas, and this mass has not been taken into account
		Concentrations in g/dm ³ Remember 1 dm ³ = 1000 cm ³	Higher Tier – Remember moles = <u>mass</u> Mr
		Higher Tier Moles and molar calculations	<i>Use specimen papers and summary sheets on the reference drive for more ideas</i>
Chemistry	only content	Limiting reactants Percentage yield	Titration calculations always come up!
		Atom economy Concentrations in mol/dm ³	Remember 1 mole of any gas has a volume of 24 dm ³ (which is also 24,000 cm ³)
		Calculations involving gas volumes	
Week 4 24 th	C4 chemical changes	Reactivity series of metals	Required practical - making a soluble salt
March		Extraction of metals with carbon Reactions of metals with acids	Required practical - investigating electrolysis
		Neutralisation and making salts	Explain why some metals are extracted by heating with carbon, but others must
		The pH scale	use electrolysis, related to position in reactivity series
		Electrolysis (molten and aqueous compounds)	Higher Tier Compare and explain properties of weak
		Extracting metals like aluminium using electrolysis	and strong acids, including describing a simple chemical test to tell them apart
		Higher Tier Redox reactions in terms of electrons (OILRIG)	Use specimen papers and summary sheets on the reference drive for more ideas
		Writing half equations (balancing using electrons)	
		Strong and weak acids	
Chemistry only content		Titrations	Required practical – titrations

Week 5 31 st	C5 energy changes	Exothermic and endothermic reactions	Required practical - investigating temperature change
March		Reaction profiles (energy level	
		diagrams)	Label energy level diagrams to show position of products, overall energy
		Higher Tier	change and activation energy for both
		Energy changes for breaking and forming bonds	exothermic and endothermic reactions
			Higher Tier
		Calculating overall change from bond energy values	Effect of bond strength on overall energy change (compare relative size of bond breaking vs bond forming)
			Bond energy calculations
			Use specimen papers and summary sheets on the reference drive for more ideas
Chemistry only content		Chemical cells and fuel cells	Evaluate use of fuel cells vs rechargeable cells ie. pros/cons

Year 11 Science GCSE Revision – CHEMISTRY (PAPER 2)

Chemistry only content is the extra work that separate science students have studied

All support resources (specimen exam papers, mark schemes, powerpoints, summary sheets, core practicals) can be found on the reference drive at N:\Reference\Science\NEW AQA GCSE

Revision should be checked against syllabus content (different for TRIOLOGY and separate CHEMISTRY) at N:\Reference\Science\NEW AQA GCSE\syllabus content (chemistry)

Make sure you **revise the required practicals** properly. These are more likely to come up on the examination papers

Week	Торіс	Key Ideas	Topics for possible longer answer responses
Beginning			
Week 6	C6 rate and	Calculating mean rate from supplied	Required practical - investigating rate of
7 th	extent of	data or graphs	reaction (changing concentration or temp.)
April	chemical		
	change	Explaining how concentration, pressure, surface area, temperature and using a catalyst affect rate of	Explain changes in rate using idea of collision theory (particles/frequency of collisions)
		reaction using collision theory	Label energy level diagrams to show position of products, overall energy change and
		Activation energy, catalysts and	activation energy for both exothermic and
		reaction profiles (energy level diagrams)	endothermic reactions (similar to C5 as content overlaps)
		Reversible reactions	Higher Tier Explain changes in equilibrium position
		Equilibrium definition	using Le Chatelier's principle, including why compromise conditions are often chosen
		Higher Tier	
		Calculating rate from tangents on graphs	Use specimen papers and summary sheets on the reference drive for more ideas
		Le Chatelier's principle and	
		predicting effect of concentration,	
		pressure and temperature on equilibria	
Chemistry of	only content	No extra content	
Week 7	C7 organic	Crude oil, hydrocarbons (definition)	Explain how fractional distillation and
14 th April	chemistry	and alkanes and their structure	cracking work, and how they supply demand for fuels such as petrol
		Fractional distillation of crude oil	
		Properties of hydrocarbons	Explain how properties of hydrocarbons such as alkanes vary with chain length
		Cracking and alkenes	Use specimen papers and summary sheets on the reference drive for more ideas
		Bromine water as a test for alkenes	

Use your login to My GCSE Science to support your learning https://www.my-gcsescience.com/

Chemistry only content		Alkenes, alcohols and carboxylic acids	Compare addition vs condensation polymerisation commenting on similarities
		acius	and differences
		Synthetic and natural polymers	
		including addition polymers,	Compare and explain properties of weak and
		condensation polymers, starch,	strong acids, including describing a simple
		cellulose, proteins and DNA	chemical test to tell them apart (similar to
			C4 since carboxylic acids are weak acids)
Week 8	C8 chemical	Purity and formulations (definition)	Required practical – chromatography
21 st April	analysis	Character and a	
		Chromatography	
		Calculating R _f values	Use specimen papers and summary sheets
		Identifying common gases,	on the reference drive for more ideas
		hydrogen, oxygen, carbon dioxide	
		and chlorine	
Chemistry only content		Flame tests and flame emission	Required practical - identifying ions
		spectroscopy	
			Evaluate methods for identifying metal ions,
		Identifying metal ions in solution	eg. pros and cons of flame tests vs
		from metal hydroxides	spectroscopy
		Identifying carbonates, halides and	
		sulfates	
Week 9	C9	% of gases in current atmosphere	Describe and explain how the early
28 th April	chemistry		atmosphere changed to gives us the % of
	of the	Evolution of the atmosphere, early	gases in our current atmosphere
	atmosphere	composition of gases, importance of	
		green plant evolution	Explain why CO ₂ and methane, CH ₄ , levels
			are increasing, actions to reduce emissions
		Global warming and carbon dioxide,	and describe the effects of global warming
		CO ₂ , and methane, CH ₄ , as	
		greenhouse gases	Describe fully the differences between
			complete and incomplete combustion of
		Carbon footprint	hydrocarbon fuels
		Atmospheric pollutants, sources and	Use specimen papers and summary sheets
		their effects	on the reference drive for more ideas
Chemistry of	only content	No extra content	
	040 ·	Finite and renewable resources	Required practical - purifying water
Week 10	C10 using		requires pression party, ing reason
Week 10 5 th May	resources		
	-	Potable water and waste water	Carry out simple comparative life cycle
	-		Carry out simple comparative life cycle assessments eg. for shopping bags made
	-	Potable water and waste water treatment	Carry out simple comparative life cycle
	-	Potable water and waste water	Carry out simple comparative life cycle assessments eg. for shopping bags made
	-	Potable water and waste water treatment	Carry out simple comparative life cycle assessments eg. for shopping bags made from plastic or paper
	-	Potable water and waste water treatment Life cycle assessments and recycling	Carry out simple comparative life cycle assessments eg. for shopping bags made from plastic or paper Higher Tier

		Use specimen papers and summary sheets on the reference drive for more ideas
Chemistry only content	Corrosion and prevention Alloys, ceramics, polymers and composites	Compare properties of materials such as alloys, composites, polymers, ceramics and glass from supplied data to make recommendations about suitability
	The Haber process and production of NPK fertilisers	Explain, using Le Chatelier's principle, the ideal conditions required in the Haber Process (temperature, pressure, catalyst) including why compromise conditions are often chosen