Magnetism and Electromagnetism

scribe the force between unlike les	Attracts
nat is a permanent magnet?	A magnet that produces its own magnetic field
nat is an induced magnet?	A material that becomes a magnet when it is placed in a magnetic field
nat direction does a magnetic field vays act in?	From north to south
nere is a magnetic field the ongest?	Next to the poles of the magnet
nat happens to the strength of a gnetic field as you move further m the magnet?	It decreases
w do magnetic compasses provide dence that the Earth's core must be gnetic?	A magnetic compass contains a small bar magnet. The Earth has a magnetic field. The compass needle points in the direction of the Earth's magnetic field
nat is the magnetic field like bund a current-carrying wire?	Circular around the wire Direction of Direction of Magnetic Field Direction of Current Of Current
nat factors affect the strength of a agnetic field due to a current- rrying wire?	Strength of the current, distance from the wire
scribe three ways the strength of an ctromagnet can be increased	Increasing the current in the wire, adding an iron core, adding more coils of wire
w does an electric motor work?	The force on a current-carrying wire in a magnetic field pushes one side of a coil down and the other side up
Γ) Describe the motor effect	When a current carrying wire is placed in a magnetic field, the magnet producing the field and the conductor and the conductor exert a force on each other. This can be represented using

Q1.

Magnets attract some metals.

(a) Which diagram shows the correct magnetic field pattern for a bar magnet?Tick (✓) one box.

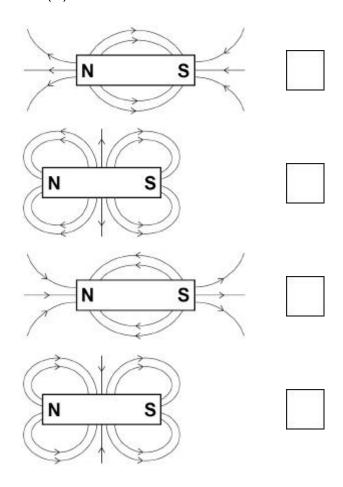
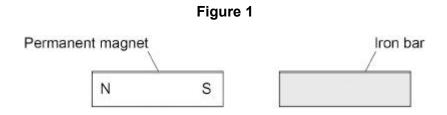



Figure 1 shows an iron bar near a permanent magnet.

(1)

(1)

The iron bar becomes an induced magnet.

(b) Label the poles on the iron bar.

(c) The magnet is turned around so that the north pole is closest to the iron bar.

Wh	nich statement about the iron bar is true	e?	
Tic	k (✓) one box.		
	ne iron bar does not experience a agnetic force.		
	ne iron bar experiences a magnetic rce of attraction.		
	ne iron bar experiences a magnetic rce of repulsion.		
5 : 0			(1)
conveyor		o separate pieces of different types of metal on a	
	Fig	ure 2	
	Pieces of metal	Electromagnet Conveyor belt	
	»		
(d) Wh	ich two of the following types of metal	would be attracted to the electromagnet?	
Tic	k (✓) two boxes.		
Alı	uminium		
Co	opper		
Ma	agnesium		
Ni	ckel		
St	eel		
			(2)

(e) What is an advantage of using an electromagnet instead of a permanent magnet to separate the types of metal?

Tick (✓) one box.	
An electromagnet attracts more types of metal than a permanent magnet.	
An electromagnet can be switched on and off.	
An electromagnet transfers less energy than a permanent magnet.	(1)
Figure 3 shows a simple electromagnet.	
Figure 3	
Cell Coil of wire	
(f) What is the purpose of the iron nail inside the coil of wire?	
Tick (✓) one box.	
The iron nail makes the magnetic field stronger.	
The iron nail reduces the magnetic field to zero.	
The iron nail reverses the magnetic field.	
	(1)
(g) Which of the following would increase the strength of the electromagnet?	
Tick (✓) one box.	

Use a greater current.	
Use a shorter nail.	
Use a thinner wire.	
	(1)
	(Total 8 marks)

Q2.

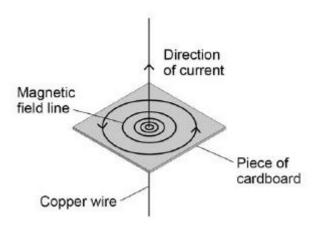
Magnetic force is a non-contact force.

(a) Which **two** of these are also non-contact forces?

	Tick (✓) two boxes.		
	Air resistance		
	Electrostatic		
	Friction		
	Gravitational		
	Tension		
			(2)
(b)	Figure 1 shows a bar mag	gnet.	
		Figure 1	
		Α	
	В	N S D	
		С	
	Which letter shows the postrongest?	sition where the magnetic field around the bar magnet is	
	Tick (✓) one box.		
	А В	c D	
			(1)
(c)	When two magnets are br	ought close to each other they exert a force on each other.	
		gnets can be used to demonstrate a force of attraction and a	
	Force of attraction		

	Force of repulsion		
Figu	re 2 shows some pape	er clips that are attracted to a permanent magnet.	(2)
		Figure 2	
(d)	The paperclips becom	ne magnetised when they are close to the permanent magnet.	
	What is the name of t	his type of magnetism?	
	Tick (√) one box.		
	Forced magnetism		
	Induced magnetism		
	Strong magnetism		(1)

Q3.


Figure 1 shows the magnetic field around a copper wire carrying a current.

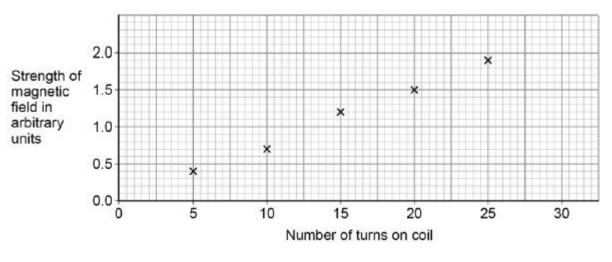
(e) Label the north and south poles of the two magnetised paper clips in **Figure 2**.

Figure 1

(2)

(Total 8 marks)

Complete the sente	ence		
Choose the answe			
decreases	increases	stays the same	
- 4h 12-4	m the copper wire		
is the distance tro			
	19u1		
is the distance fro	<u> </u>		
nagnetic field strer		re 1 show the variation in field strength	1.


A student coiled the copper wire a different number of times to form a solenoid.

Each time the student measured the strength of the magnetic field inside the solenoid.

Figure 2 shows the results.

(2)

Figure 2

(d)	Draw a line of best fit on Figure 2.
-----	--------------------------------------

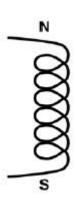
(e) Determine the increase in strength of magnetic field when the number of turns on the coil is changed from 12 to 18

Increase in strength of magnetic field =	arbitrary units
moreage in eachigan or magnetic nord	arbitrary armo

(1)

(2)

(2)

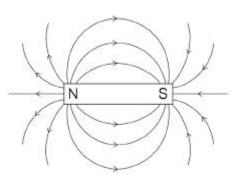

(f) How could the strength of the magnetic field be increased?

Tick two boxes.

Increase the current through the solenoid.	6 8
Increase the potential difference across the solenoid.	
Increase the temperature of the solenoid.	
Spread the turns of wire on the solenoid further apart.	
Use wire with a higher resistance to make the solenoid.	

(g) Figure 3 shows the north and south poles of a solenoid.

Figure 3


(h)	How can the solenoid be made into an electromagnet?	
		(1)
		(Total 12 marks)

HIGHER QUESTIONS

Q1.

Figure 1 shows the magnetic field pattern around a permanent magnet.

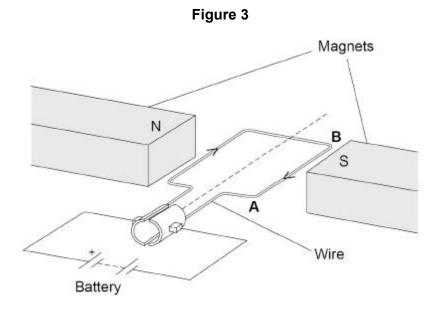

Figure 1

a)	Where is the magnetic field of the magnet the strongest?	
)	How does Figure 1 show that the strength of the magnetic field is not the same at all places?	

Figure 2 shows an electromagnet being used to separate iron and steel from non-magnetic metals.

Figure 2

(c)	Explain one reason why an electromagnet is used instead of a permanent magnet.


(2)

(d)	Pieces of iron and steel are attracted to the electromagnet.	
	Name two other metals that would be attracted to the electromagnet.	
	1	
	2	(2)
(-)		(2)
(e)	The design of the electromagnet cannot be changed.	
	Give two ways the force exerted by the electromagnet on a piece of iron or steel could be increased.	
	1	

(2)

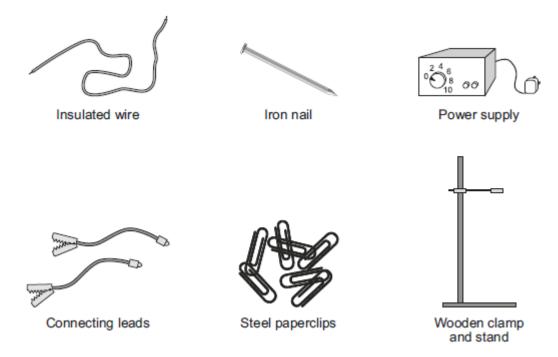
The conveyor belt that moves the pieces of metal is driven by an electric motor.

Figure 3 shows a simple electric motor.

(f)	The length of the wire AB in the magnetic field is 120 mm.
	There is a current of 4.0 A in the wire. The length of wire AB experiences a force of 0.36 N.
	Calculate the magnetic flux density between the magnets.
	Give the unit.
	Magnetic flux density = Unit
(g)	Fleming's left-hand rule can be used to determine the direction of the force on wire AB .
	Complete the labels on Figure 4 to show Fleming's left-hand rule.
	Figure 4
	Direction of
	Direction of
	Direction of
	(Total 15 marks

Q2.

(a) Electromagnets are often used at recycling centres to separate some types of metals from other materials.


Give **one** reason why an electromagnet would be used rather than a permanent magnet.

(1)

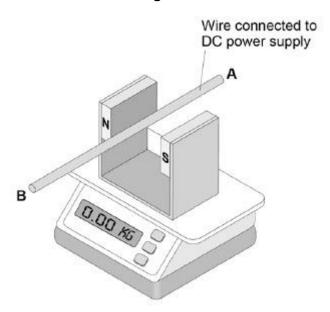
(b) In this question you will gain marks for using good English, organising information clearly and using scientific words correctly.

Some students want to build an electromagnet.

The students have the equipment shown below.

Describe how the students could build an electromagnet. Include in your answer how the students should vary and test the strength of their electromagnet.

(6) (Total 7 marks)


Q3.

A student placed a permanent magnet on a top-pan balance.

He clamped a straight piece of wire so that it was suspended in the magnetic field.

Figure 1 shows the apparatus.

Figure 1

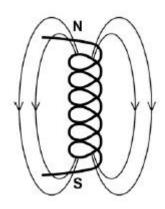
(a) When a current passed through the wire from **A** to **B**, the reading on the balance increased.

Explain why.			

(4)

	Sketch a graph on Figure 2 to show the relationship between the current and magnetic force on the wire.	
	Label the axes, with the independent variable on the x-axis.	
	Figure 2	(2)
(c)	The length of the wire in the magnetic field in Figure 1 is 4.8 × 10 ⁻² m The current in the wire is 0.80 A The reading on the balance is 1.2 × 10 ⁻³ kg Gravitational field strength = 9.8 N/kg Calculate the magnetic flux density of the permanent magnet.	
	Magnetic flux density =(Total	tesla (5) l 11 marks)

(b)


The student increased the current in the wire.

FOUNDATION Mark schemes

Q1.		
(a)	first box ticked N S	
		1
(b)	N S	1
(c)	the iron bar experiences a magnetic force of attraction	1
(d)	nickel	1
	steel	1
(e)	an electromagnet can be switched on and off	1
(f)	the iron nail makes the magnetic field stronger	1
(g)	(g) use a greater current	
		1 [8]
Q2.		
(a)	electrostatic	1
	gravitational	1
(b)	D	
(c)	bring two unlike poles close together allow north and south poles	1
	allow opposite poles	1
	bring two like poles close together allow two north / south poles allow N for north and S for south	

1

(d)	induced magnetism	1
(e)	all 4 poles correctly labelled north and south allow N for north and S for south allow 1 mark for 2 or 3 correctly labelled poles	² [8]
Q3.		
(a)	the direction of the magnetic field	1
(b)	decreases	1
(c)	the distance between the field lines allow the clos <u>er</u> the lines the strong <u>er</u> the field for 2 marks	1
	is small <u>er</u> where the field is strong <u>er</u> <i>allow where the lines are close the field is strong for</i> 1 mark	1
(d)	straight line drawn within 1 mm of all points on the graph	1
(e)	1.3 – 0.9	1
	0.4 arbitrary units	1
(f)	increase the current through the solenoid if more than 2 boxes are ticked deduct 1 mark for each extra box ticked	1
	increase the potential difference across the solenoid	1
(g)	at least one field line on each side of the solenoid	1
	an arrow to indicate the field going from North to South pole	

(h) add an iron core

allow a description of this, eg wrap the wire around an <u>iron</u> nail adding a core is insufficient

[12]

1

HIGHER Mark schemes

Q1.

(a) at the poles

nickel

- (b) the distance between the field lines varies
- (c) electromagnet is easy to demagnetise

 allow electromagnet can be switched off
 - so easy to remove separated metal

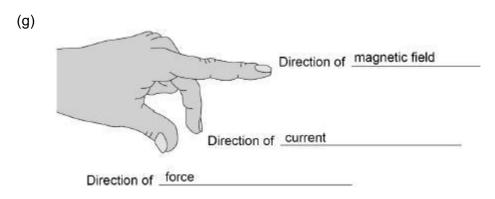
 allow electromagnet is (generally)

 stronger than a permanent magnet for 1

 mark if no other marks are awarded

1

- (d) cobalt
- 1
- (e) increases the current in the coil of the electromagnet


 allow increase potential difference

 across the coil
 - bring the electromagnet closer to the pieces of iron and steel
- (f) L = 0.120 m
 - 0.36 = B × 4.0 × 0.120

 allow a correct substitution of an
 incorrectly / not converted value of L
 - $B = \frac{0.36}{(4.0 \times 0.120)}$ allow a correct rearrangement using an incorrectly / not converted value of L
 - B = 0.75

 allow a correct calculation using an incorrectly / not converted value of L

Т

allow 1 mark for 1 or 2 correct

[15]

2

Q2.

(a) an electromagnet can be switched off

accept a permanent magnet cannot be switched off

or

an electromagnet is stronger

accept control the strength

1

(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should apply a 'best-fit' approach to the marking.

Level 3 (5 – 6 marks):

there is a description of how the electromagnet is made

and

there is a description of how the strength of the electromagnet can be varied

and

there is a description of how the strength of the electromagnet can be tested

Level 2 (3 – 4 marks):

there is a description of how the electromagnet is made

and either

there is a description of how the strength of the electromagnet can be varied

or

there is a description of how the electromagnet can be tested

Level 1 (1 – 2 marks):

there is a basic description of how to make an electromagnet

or

there is a basic description of how the strength of the electromagnet can be varied

or

there is a basic description of how the electromagnet can be tested

Level 0 (0 marks):

No relevant / correct content

examples of the points made in the response

Details of how to make an electromagnet

- wrap the wire around the nail
- connect the wire to the power supply (with connecting leads and croc clips)
- switch on the power supply

accept a current should be sent along the wire

Details of how to vary the strength of the electromagnet

- change the number of turns (on the coil)
- change the current (through the coil)
- change the separation of the turns

allow change the potential difference (across the coil)

accept wrap the coil more tightly

Details of how to test the electromagnet

- suspend paperclips from the electromagnet
- the more paperclips suspended, the stronger the electromagnet is
- clamp the electromagnet at different distances from the paperclip(s)
- the further the distance from which paperclips can be attracted the stronger the electromagnet is
- test before and after making alterations to change the strength
- compare the results from before and after making alterations
- use de-magnetised paper clips

accept count the number of paperclips with different current **or** p.d. **or** no. of turns **or** core and see if the number changes/increases

[7]

1

1

1

Q3.

(a) the current creates a magnetic field in the wire

which interacts with the magnetic field from the permanent magnet

Flemming's left hand rule says the force on the wire is upwards

so the force on the permanent magnets is downwards

(b) x-axis labelled current **and** y-axis labelled (magnetic) force ignore units on labels

		1	
	straight line through the origin	1	
(c)	$W = mg = 1.2 \times 10^{-3} \times 9.8$	1	
	W = 0.01176	1	
	$0.01176 = B \times 0.80 \times 4.8 \times 10^{-2}$	1	
	$B = \frac{1.2 \times 10^{-3} \times 9.8}{0.8 \times 4.8 \times 10^{-2}}$	1	
	B = 0.31		
	an answer of 0.031 scores 3 marks		
	an answer of 0.31 scores 5 marks		
		1	[11]