P6 Waves Part 1

1	What is the amplitude of a wave?	The maximum displacement of a point on a wave from its undisturbed position (measured in metres)	
2	What is the wavelength of a wave?	The distance from a point on one wave to the equivalent point on the adjacent wave e.g. distance from peak to peak (measured in metres)	
3	What is the time period of a wave?	The time for one complete wave cycle to pass a point (measured in seconds)	
4	What is the frequency of a wave?	The number of wave cycles to pass a point each second (measured in Hertz, Hz)	
5	What is the definition of a transverse wave?	Vibrations oscillate at right angles (perpendicular) to the direction of wave travel.	
6	What is the definition of a longitudinal wave?	The particles oscillate parallel to the direction of wave travel.	
7	Give an example of transverse waves	Surface water wave, Secondary Earthquake waves, Electromagnetic waves	
8	Give an example of longitudinal waves	Sound waves, Primary Earthquakes	
9	Define a wave	Waves transfer energy without the transfer of matter	
10	What is the unit of frequency ?	Hertz (Hz)	
11	What is the unit for wavelength ?	m (metres)	
12	Describe the features of a transverse wave.	trough	
		-Peak/crest at maximum positive displacement	
13	Describe the features of a longitudinal wave		
		Area of compression (high pressure) Areas of rarefaction (low pressure)	

P6 Waves Part 2

1	Name the 7 groups in the electromagnetic spectrum in order.	Radio, microwaves, infra-red, visible, ultraviolet, X-rays, gamma rays	
2	Which part of the electromagnetic spectrum can our eyes detect?	Visible (light)	
3	Which part of the electromagnetic spectrum has the longest wavelength /lowest frequency?	Radio	
4	Which part of the electromagnetic spectrum has the shortest wavelength /highest frequency?	Gamma	
5	(HT) What 4 things can happen when a wave hits a boundary ?	Absorption (energy taken in), transmission (wave passes through), reflection (wave bounces off), refraction (wave changes direction in the material)	
6	What is refraction?	When a wave changes direction when it passes from one material to another θ ₁ Hir Glass θ ₂ θ ₁	
7	(HT) What causes refraction ?	Changes to a wave's velocity in different materials.	
8	(HT) What happens to wave fronts when a wave travels from a less dense (e.g air) to a more dense medium? (e.g. glass)	They get closer together Glass (Denser)	
9	What is the name given to the line drawn perpendicular (90°) to the boundary where a wave hits it?	The normal line	
10	(HT) How are radio waves produced by a circuit in a transmitter?	Alternating p.d. causes electrons in the circuit to oscillate, emitting radio waves with the same frequency as the alternating current	
11	(HT) What happens when radio waves are absorbed by a wire in a circuit?	Electrons in the circuit absorb the waves and oscillate, producing an alternating current with the same frequency as the radio wave	
12	Describe how gamma rays are produced	Emitted by the nucleus of an unstable atom	

P6 Waves Part 3

1	State a use of radio waves	Television and radio communication
2	State 2 uses of microwaves	Satellite communication (inc. mobile phones), cooking
3	State three uses of infra-red waves	Night-vision camera, remote controls, cooking/heating food
4	State a use of visible light	Fibre-optics
5	State 3 uses of ultra-violet light	Fluorescent light bulbs, tanning beds, counterfeit note detection
6	State 2 uses of x-rays?	X-ray photography for medical diagnosis, security scans for airport luggage
7	State 2 uses of gamma waves?	Radiotherapy, Killing pathogens, sterilising medical equipment
8	Give 2 examples of electromagnetic waves transferring energy from emitter to absorber	Energy is transferred from the Sun (emitter) via visible light to the Earth (absorber); energy is transferred from an X-ray machine (emitter) via X-rays to bones and photographic plate4 (absorbers)
9	Which type of electromagnetic wave	Gamma
10	Is the most ionising?	(Highest frequency = Highest energy)
10	Describe how X-rays are used to produce medical images	X-rays are transmitted through skin and muscle. X-rays cannot penetrate bone and so the energy is absorbed – this creates a "shadow" where the bones are.
11	What are the hazards from UV waves?	Ageing of the skin, ionisation in skin cells can increase the risk of skin cancer
12	What are the hazards from X-rays and gamma rays?	Ionisation in cells can increase the risk of cancer. This depends on the frequency on the wave and the dosage
13	What 3 things do all electromagnetic waves have in common?	They are all transverse waves, they all travel at 3x10 ⁸ m/s in a vacuum, they all transfer energy from emitter to absorber

P6 Waves (Triple Content)

1.	What is the range of human hearing?	20Hz - 20kHz	
2.	(HT) Why can humans only hear a limited range of frequencies?	Within the ear, sound waves cause the ear drum and other parts to vibrate which causes the sensation of sound. The conversion of sound to vibrations in solids works over a limited frequency range, restricting human hearing	
3.	(HT) How does echo-sounding, including ultrasonography and seismic wave detection, allow us to investigate unobservable structures?	Vibrational waves are reflected and absorbed differently by different materials and so can give us information about structures we can't see.	
4.	How are frequency, speed and wavelength affected when sound travels from one medium to another.	When a sound wave travels from one medium to another, its frequency remains constant but its speed may change, causing its wavelengths to change.	
5.	Draw the ray diagram representation of a convex and concave lens	Convex Concave	
6.	State 2 similarities between convex and concave lenses	Both have a focal length; both work by refracting light	
7.	What is the difference between convex and concave lenses?	A convex lens makes parallel rays converge to a focus; a concave lens makes parallel rays diverge (spread out)	
8.	How is colour related to differential absorption?	A coloured object, e.g. red, absorbs all wavelengths of light except the wavelength of that colour (e.g. red)	
9.	How is colour related to differential transmission?	A coloured filter, e.g. green, transmits only light of that wavelength (e.g. green) and absorbs all other wavelengths	
10.	What is the difference between specular and diffuse reflection?	Specular reflection occurs on a smooth surface like a mirror parallel rays are reflected in a single direction. Diffuse reflection occurs on a rough surface: parallel rays are scattered in different directions	
11.	How does the temperature of an object affect the intensity of the radiation it gives out?	The higher the temperature, The higher the intensity	
12.	How does the temperature of an object affect the frequency of the radiation it gives out?	The higher the temperature, the higher the intensity of all frequencies, and the higher the peak	
13.	(HT) How does absorption and emission of radiation affect the temperature of an object?	If absorption is higher than emission, the object's temperature increases.	
14	(HT) What factors determine the temperature of the Earth?	The rate that radiation from the Sun is absorbed, the amount of radiation that is reflected, and the amount of radiation that is radiated out into space.	

Foundation

Q1.

(a) **Figure 1** shows parallel rays of light being refracted by a convex lens.

What is distance 'X' called?

(b) Lenses can be used to form the image of an object.

Complete the ray diagram in **Figure 2** to show how a **convex** lens forms the image of the object.

Use an arrow to represent the image.

Figure 3 shows how a concave lens forms the image of an object.

Figure 3

(1)

(2)

(c) Give **one** similarity and **one** difference between the image formed by the convex lens and the image formed by the concave lens.

	Difference		
(d)	A person uses a lens to read the letters on the back of a coin.		
	The image height of the letters on the coin is 9.0 mm		
	The magnification produced by the lens is 6.0		
	Calculate the height of the letters on the coin.		
	Use the Physics Equations sheet.		
	Height = mm		

(3)

(Total 8 marks)

Q2. The following figure shows the apparatus used to investigate the waves in a stretched string.

The frequency of the signal generator is adjusted so that the wave shown in the figure is seen. At this frequency the string vibrates between the two positions shown in the figure.

- (a) The wavelength of the wave shown in the figure above was measured as 80 cmWhat piece of apparatus would have been suitable for measuring this wavelength?
- (b) Write down the equation which links frequency, wavelength and wave speed.
- (c) The string in the figure above vibrates at 55 Hz

Calculate the wave speed of the wave shown in the figure.

Use data given in the figure.

Wave speed = _____ m/s

(3)

(1)

(1)

(d) The frequency of the signal generator is increased.

This makes the wavelength of the wave change.

The wave speed stays the same.

Describe how the apparatus could be adjusted to show one complete wave without reducing the frequency.

(e) A student wants to investigate how the speed of a wave on a stretched string depends on the tension in the string.

The student uses the apparatus in the figure above.

Describe a method the student could use for this investigation.

(4) (Total 11 marks)

Q3. P-waves and S-waves are two types of seismic wave caused by earthquakes.

 (a) Which one of the statements about P-waves and S-waves is correct? Tick one box.

P-waves and S-waves are transverse.

P-waves and S-waves are longitudinal.

P-waves are transverse and S-waves are longitudinal.

P-waves are longitudinal and S-waves are transverse.

Seismometers on the Earth's surface record the vibrations caused by seismic waves.

The diagram below shows the vibration recorded by a seismometer for one P-wave.

(b) Calculate the frequency of the P-wave shown in the diagram above.

Frequency =	_ Hz
Write down the equation which links frequency, wavelength and wave speed.	
The P-wave shown in the diagram above is travelling at 7200 m/s.	
Calculate the wavelength of the P-wave.	
Wavelength =	m
	è
Explain why the study of seismic waves provides evidence for the structure of the Earth's core.	
Explain why the study of seismic waves provides evidence for the structure of the Earth's core.	
Explain why the study of seismic waves provides evidence for the structure of the Earth's core.	

HIGHER

Q4.

Ultraviolet is a type of electromagnetic wave.

- (a) Give **one** use of ultraviolet.
- (b) An ultraviolet wave has a wavelength of 300 nanometres.

Which of the following is equal to 300 nanometres?

Tick (\checkmark) one box.

3 × 10 ⁷ m	
3 × 10 ⁻⁷ m	
3 × 10 ⁹ m	
3 × 10-⁰ m	0

(c) The speed of ultraviolet waves is 3×10^8 m/s.

Calculate the frequency of the ultraviolet wave.

Use your answer to part (b)

Frequency =	Hz

(d) The table below gives the wavelength of an ultraviolet wave and three other electromagnetic waves.

Ultraviolet Wave E	Wave F	Wave G
--------------------	--------	--------

(1)

(3)

(1)

Draw **one** line from each wave to the name of the wave.

(e) Electromagnetic waves are transverse.

Some other types of wave are longitudinal.

Describe the difference between transverse and longitudinal waves.

(1)

Q5.

A teacher demonstrated some features of waves using a ripple tank.

The figure below shows the ripple tank.

(a) The teacher measured the time taken for 10 wave fronts to pass the mark.

The teacher repeated this measurement three times and calculated the mean.

The teacher were:	r's measurements for the time taken for 10 wave fronts to pass the mark
	8.4 s 7.8 s 8.1 s
Calculate th	ne mean frequency of the wave.
Give your a	nswer to 2 significant figures.
	Mean frequency (2 significant figures) = H
In a differen waves in the	it investigation, the teacher wanted to determine the speed of water e ripple tank.
The teache	r did not measure the wavelength of the wave.
Explain how	v the teacher could determine the speed of the wave.

Q6.

A door is fitted with a security lens and a lock.

The security lens allows a person to see a visitor before opening the door.

The security lens is concave.

(a) The diagram below is an incomplete ray diagram representing a visitor standing near the security lens.

Complete the diagram to show how an image of the visitor is formed by the concave lens.

Draw an arrow to represent the image.

(b) The visitor moves further away from the security lens in the door.

How does the size of the image change?

Tick (\checkmark) one box.

Decreases	
Increases	
Stays the same	

The diagram below shows a diagram of the lock. The door unlocks when the switch is closed.

(3)

(1)

(c) Which material should the bolt be made from?

Tick (\checkmark) one box.

Aluminium	
Brass	
Copper	
Iron	

(d) Explain why the door unlocks when the switch is closed.

(e) When the door unlocks, a force of 2.88 N is applied to the spring.

The spring extends by 1.50 cm.

Calculate the spring constant of the spring.

(1)

(3)

	Spring constant =	N/m
Bive two ways the resu	ultant force on the bolt could be increased.	
1		

(Total 14 marks)

Mark schemes

Q1.		
(a)	focal length	
	this answer only	
		I
(b)	one correct line drawn from the top of the object, passing through the lens and crossing or meeting given line	
	ignore any arrow drawn on the line	
	if two lines are drawn, both must be correct	1
		1
	inverted image drawn at the correct position and length	
	arrowhead required	1
		I
(c)	similarity	
	(both are) diministred	1
	difference	
	concave is virtual and convex is real	
	or	
	concave is upright and convex is inverted	
	allow smaller for diminished	
	ignore reference to positions of images	
		1
(d)		
	an answer of 1.5 (mm) scores 3 marks	
	9.0	
	$6.0 = \frac{0.0}{\text{object height}}$	
	-,	1
	9.0	
	object height = $\frac{3.0}{6.0}$	
	0.0	1
	abiast baight = 1.5 (mm)	
	provided working can be seen an attempt to convert	
	9.0 mm to cm or m with all other steps correct scores 2	
	marks	1
		[8]
_		

Q2.

(a) metre rule

allow metre ruler allow tape measure do not accept ruler

	·	1
(b)	(wave) speed = frequency × wavelength	
	allow $v = f \lambda$	1
(c)		
	an answer of 44 (m/s) scores 3 marks	
	80 cm = 0.8 m	1
	v = 55 × 0.8	
	this mark may be awarded if wavelength is incorrectly or not converted	1
	v = 44 (m/s)	
	allow correct calculation using an incorrectly or not converted wavelength	
	an answer of 4400 (m/s) scores 2 marks	1
(d)	move the (wooden) bridge	
	to the right	1
	dependent on 1 st mp being scored	1
	OR	
	change the mass/weight (on the string) scores 1 mark	
	add more masses/weights (to the string) scores both marks	
(e)	Level 2 : The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	
		3–4
	Level 1 : The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	
		1–2
	No relevant content	0
	Indicative content	
	add or take away masses from the string (ignore any stated values)	
	adjust frequency using the signal generator and/or move the wooden bridge	
	observe a steady / stationary pattern measure the wavelength	
	calculate wave speed from frequency and wavelength	
	a Level 1 answer should include a way of changing tension a complete Level 2 answer would include either changing frequency and/or moving the bridge	

1

1

1

1

1

1

2

[8]

Q3.

- (a) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question.
- (b) 0.4
- (c) wave speed = frequency × wavelength allow $v = f \lambda$
- (d) 7200 = 0.4 × wavelength

wavelength =
$$\frac{7200}{0.4}$$

wavelength = $18\ 000\ (m)$

allow up to full marks for ecf using their answer to part **(b)** a method shown as 7200 × 2.5 = 18 000 scores **0** marks

an answer 18 000 scores 3 marks

(e) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question.

Q4.

- (a) any **one** from:
 - (sun) tan
 - energy efficient lamps

allow

- (invisible) security coding
- detecting forged bank notes
- kill microbes
- attract insects
- sterilise (surgical) equipment
- cause the body to produce vitamin D
- increasing the growth rate of plants
- water purification

1

1

(c) 3.0×10^8 = frequency $\times 3 \times 10^{-7}$ allow ecf from part (b)

frequency =
$$\frac{3.0 \times 10^8}{3 \times 10^{-7}}$$

1

1

1

1

1

1

1

1

[8]

frequency =
$$1 \times 10^{15}$$
 (Hz)

(d)

all three lines correct for ${\bf 1}$ mark

(e) in a transverse wave, the oscillations / vibrations are perpendicular to the direction of energy transfer

allow direction of wave travel for direction of energy transfer

in a longitudinal wave, the oscillations / vibrations are parallel to the direction of energy transfer

Q5.

(a) to reduce the effect of random errors allow gives a more accurate mean ignore reference to anomalous results ignore measurements are more accurate

(b)
$$\frac{(8.4+7.8+8.1)}{3} = 8.1$$
 (s)
 $\frac{8.1}{10} = 0.81$ (s)
 $= 0.81$ (s)

frequency = <u>1</u> 0.81

allow a correct substitution of an incorrectly calculated

		1	
	frequency = 1.2345		
	this mark may be awarded if the time is incorrectly calculated		
		1	
	frequency = 1.2 (Hz)		
	allow a calculated value correctly rounded to 2 sig figs	1	
		1	
(c)	measure the distance travelled by a wave using a metre rule		
	allow measure the length of the (ripple) tank using a metre rule		
		1	
	measure the time taken (for the wave to travel the measured distance) with a timer /		
	stopwatch	1	
	divide the distance by the time		
	dependant on scoring the hist two mark points	1	
			[9]
• •			
Q6.			
(a)	any two correct lines drawn from the top of the visitor and passing through the lens		
		2	
	image drawn at the correct position and with the correct orientation		
	mark only scores if first two marks scored.		
	a convex lens diagram scores 0 marks		
	Ĭ		

- Vac Article
- (b) Decreases
- (c) Iron
- (d) there is a current in the solenoid / circuit allow a charge flows through the solenoid / circuit

creating a magnetic field allow the solenoid / coil is magnetised 1

1

1

1

1

		1
(e)	1.50 cm = 0.015 m	1
	2.88 = k × 0.015 this mark may be awarded if distance is incorrectly/not converted	1
	k = 2.88 / 0.015 this mark may be awarded if distance is incorrectly/not converted	1
	k = 192 (N/m) allow a correctly calculated answer using an incorrectly/not converted distance	1
(f)	Any two from:	
	 increase the current (in the solenoid / circuit) allow any sensible suggestion for increasing the current such as increasing the p.d. / power of the battery OR using lower resistance wire in the solenoid 	
	 add more turns to the solenoid do not allow increase the number of coils 	
	use a spring with a lower spring constant	

allow use a weaker spring

[14]

2