# **C8: Chemical Analysis 1**

# **ANSWER KEY**

|       |                                                                                     | <del>,</del>                                                                                                  |
|-------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 19.1  | In everyday language what is a "pure" substance?                                    | A substance that has had nothing added to it and is in its "natural" state                                    |
| 19.2  | In chemistry what is a "pure" substance?                                            | A substance made of a single element or compound                                                              |
| 19.3  | How can pure substances be distinguished from impure ones?                          | By their melting/boiling points                                                                               |
| 19.4  | Describe the melting and boiling points of pure substances                          | Melt and boil at one very specific temperature e.g. pure water melts at 0°C and boils at 100°C                |
| 19.5  | Describe the melting and boiling points of impure substances                        | They change state over a range of temperatures                                                                |
| 19.6  | What is a formulation?                                                              | A mixture designed as a useful product                                                                        |
| 19.7  | Give three examples of formulations                                                 | Petrol, toothpaste, paints, medicines, alloys, fertilisers and chocolate biscuits                             |
| 19.8  | What is chromatography?                                                             | A process to separate the substances in a mixture like coloured inks or dyes                                  |
| 19.9  | In paper chromatography, what is the stationary phase and what is the mobile phase? | <ul> <li>paper is the stationary phase</li> <li>solvent (eg. water or ethanol) is the mobile phase</li> </ul> |
| 19.10 | How can chromatography show the difference between pure and impure substances?      | Pure substances will only show 1 spot                                                                         |
| 19.11 | How can you tell how many different substances are in the mixture?                  | Count the number of spots arranged vertically                                                                 |
| 19.12 | How is the Rf value calculated?                                                     | Rf = <u>distance moved by spot</u><br>distance moved by solvent                                               |

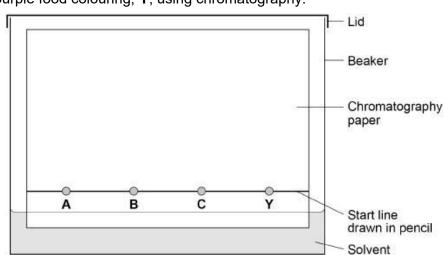
# **C8: Chemistry Analysis 2**

# ANSWER KEY

| 20.10 | How can chlorine be tested for, and what is the correct observation?                     | Test = damp blue litmus paper<br>Observation = bleached white                                     |
|-------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 20.9  | How can carbon dioxide be tested for, and what is the correct observation?               | Test = bubble through limewater<br>Observation = turns milky/cloudy                               |
| 20.8  | How can oxygen be tested for, and what is the correct observation?                       | Test = glowing splint<br>Observation = relights                                                   |
| 20.7  | How can hydrogen be tested for, and what is the correct observation?                     | Test = lit splint<br>Observation = squeaky pop                                                    |
| 20.6  | If a substance is more attracted to the stationary phase, where will it be on the paper? | Lower down                                                                                        |
| 20.5  | If a substance is more attracted to the mobile phase, where will it be on the paper?     | Further up                                                                                        |
| 20.4  | Why might a spot not move from the start line when a solvent is added?                   | It doesn't dissolve in the solvent                                                                |
| 20.3  | Why must the solvent height be below the pencil line?                                    | So that the substances do not dissolve into the solvent without moving up the paper               |
| 20.2  | In chromatography, why must the start line be drawn in pencil?                           | Pencil will not dissolve in the solvent                                                           |
| 20.1  | What does a substance's Rf value depend on?                                              | How soluble it is in the solvent – more soluble substances move further and have larger Rf values |

#### **FOUNDATION TIER**

### **Q1.** This question is about mixtures.


(a) Which substance is a mixture? Tick ( $\checkmark$ ) **one** box.

|     | Air Gold                                                                    | Methane | Nitrogen       | (1) |
|-----|-----------------------------------------------------------------------------|---------|----------------|-----|
| (b) | Food colourings are often mixtures of What name is given to mixtures that a | ·       | eful products? | (1) |

A student investigated a purple food colouring, Y, using chromatography.

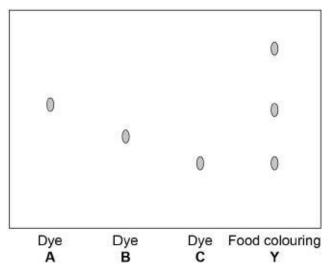
The student compares **Y** with dyes **A**, **B** and **C**.

(c) **Figure 1** shows the apparatus used.



Chromatography involves a stationary phase and a mobile phase.

Draw **one** line from each phase to what is used for that phase. Use **Figure 1**.


| Phase            | What is used         |
|------------------|----------------------|
|                  | Beaker               |
| Mobile phase     | Chromatography paper |
|                  | Food colouring       |
| Stationary phase | Pencil line          |
|                  | Solvent              |

(2)

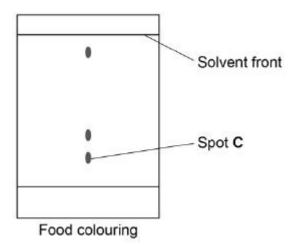
(1)

Figure 2 shows the student's results.

Figure 2



| •                                   |                                                                                           |  |
|-------------------------------------|-------------------------------------------------------------------------------------------|--|
|                                     |                                                                                           |  |
| 2                                   |                                                                                           |  |
|                                     |                                                                                           |  |
|                                     |                                                                                           |  |
|                                     |                                                                                           |  |
|                                     |                                                                                           |  |
| n a different experi                | iment a student recorded these results:                                                   |  |
| Distance moved by Distance moved by | dye <b>G</b> = 60 mm<br>solvent = 80 mm                                                   |  |
| Calculate the R <sub>f</sub> val    | lue of dye <b>G</b> .                                                                     |  |
|                                     | $R_f = \frac{\text{distance moved by dye } \mathbf{G}}{\text{distance moved by solvent}}$ |  |
|                                     |                                                                                           |  |
|                                     |                                                                                           |  |
|                                     |                                                                                           |  |
|                                     |                                                                                           |  |


(2)

(Total 9 marks)

| Whe  | en most fuels burn carbon dioxide is produced.                         |
|------|------------------------------------------------------------------------|
| Prop | pane (C₃H₃) is a fuel.                                                 |
| (a)  | Balance the equation for the combustion of propane.                    |
|      | $C_3H_8 + \underline{\hspace{1cm}} O_2 \rightarrow 3 CO_2 + 4 H_2O$ (1 |
| (b)  | Describe the test for carbon dioxide.                                  |
|      | Give the result of the test.                                           |
|      | Test                                                                   |
|      | Result                                                                 |
|      |                                                                        |
| (c)  | Propane can be cracked to produce propene and hydrogen.                |
|      | Complete the symbol equation for the reaction.                         |
|      | $C_3H_8 \rightarrow                                   $                |
| (d)  | Describe the test for hydrogen.                                        |
|      | Give the result of the test.                                           |
|      | Test                                                                   |
|      | Result                                                                 |
|      |                                                                        |
|      | (2                                                                     |
| (e)  | Propene is an alkene.                                                  |
|      | Describe the test for alkenes.                                         |
|      | Give the colour change in the test.                                    |
|      | Test                                                                   |
|      | Colour change to                                                       |
|      | (Total 9 marks                                                         |

**Q2.** This question is about the Earth's resources.

**Q3.** The diagram shows a chromatogram for a food colouring.



(a) How does the chromatogram show that the food colouring is a mixture?

(b) A student makes measurements for spot C.

The table shows the results.

|                           | Distance in mm |
|---------------------------|----------------|
| Distance moved by spot C  | 7              |
| Distance moved by solvent | 39             |

Calculate the  $R_f$  value for spot C.

Give your answer to 2 significant figures.

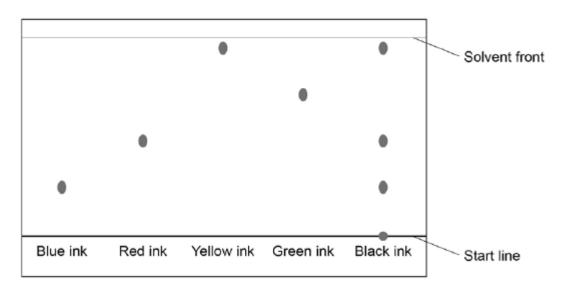
Use the results in the table.

R<sub>f</sub> value = \_\_\_\_\_

(3)

(1)

|   | Plan a chromatography experiment to investigate the colours in an ink. |
|---|------------------------------------------------------------------------|
| _ |                                                                        |
|   |                                                                        |
| - |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   |                                                                        |
|   | (Total 10                                                              |


Page 7 of 15

# **HIGHER TIER**

| a)  | Food colouring is a formulation.                                                                                                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
|     | What is a formulation?                                                                                                            |
| (b) | Explain how paper chromatography separates the dyes in a food colouring.  Do <b>not</b> give details of how to do the experiment. |
|     |                                                                                                                                   |
| (c) | Explain how the student could tell from the chromatogram that the food colouring contained more than one dye.                     |
|     |                                                                                                                                   |
| (d) | Explain how the student could use chromatography to identify unknown dyes in the food colouring.                                  |
|     |                                                                                                                                   |
|     |                                                                                                                                   |
|     |                                                                                                                                   |

(Total 8 marks)

**Q5.** The figure below shows a paper chromatogram of five different inks.



| (a) | Explain | how paper | chromatography | separates | substances |
|-----|---------|-----------|----------------|-----------|------------|
|-----|---------|-----------|----------------|-----------|------------|

| (b) | Analyse the chromatogram. Describe and explain the result for black ink. |
|-----|--------------------------------------------------------------------------|
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |

(4)

(3)

|  | R <sub>f</sub> value | = |  |
|--|----------------------|---|--|

### Mark schemes

# Q1.

(a) air

1

(b) formulation(s)

1

(c)



additional line from a box on the left negates the mark for that box

1

1

(d) allow colour for dyes

Y contains 3 dyes

1

Y contains 2 known dyes

allow Y contains A and C

1

Y contains an unknown dye

allow Y does not contain dye B

1

# alternative approach:

Y contains 3 dyes (1)

Y contains 1 known dye (1)

allow Y contains dye C

Y contains 2 unknown dyes (1)

allow  ${\bf Y}$  does not contain dyes  ${\bf A}$  and  ${\bf B}$ 

(e)

 $(R_f =) \frac{80}{80}$ 1 = 0.75ignore units 1 [9] **Q2**. (a)  $C_3H_8$  + 5  $O_2$   $\rightarrow$  3  $CO_2$  + 4  $H_2O$ allow multiples 1 (b) MP2 is dependent upon correct response in MP1 (bubble gas through) lime water allow (bubble gas through) calcium hydroxide (solution) 1 turns milky / cloudy / white white precipitate forms 1 (c)  $C_3H_6$ 1 (d) MP2 is dependent upon correct response in MP1 burning / lit splint allow flame do not accept glowing splint 1 burns with a (squeaky) pop sound allow pops 1 bromine (water) (e) do not accept bromide 1 (colour change) orange\* 1 (to) colourless\* \*allow 1 mark for colourless (to) orange ignore clear [9]

Q3.

(a) more than 1 dot in a vertical line

1

(b) correct equation and substitution 7/39 accept  $R_f$  = distance moved by spot C / distance moved by

1

calculation and answer 0.1795

1

answer to 2 significant figures 0.18

1

(c)

| <b>Level 3:</b> The plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.                   | 5-6 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Level 2:</b> The plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced. | 3-4 |
| <b>Level 1:</b> The plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.                     | 1-2 |
| No relevant content                                                                                                                               | 0   |
| Indicative content                                                                                                                                |     |
| put dots of known colours, and a dot of<br>the ink on a pencil line on the<br>chromatography paper.                                               |     |
| place the bottom of the paper in water,<br>making sure the start line is above the<br>water                                                       |     |
| leave for solvent to rise up through paper.                                                                                                       |     |
| when solvent near top of paper, remove<br>and leave to dry.                                                                                       |     |
| compare positions of dots for known colours with those from ink                                                                                   |     |

[10]

1

### Q4.

- (a) a mixture designed as a useful product
- (b) dyes distributed differently between the stationary and mobile phase

  allow dyes have different solubilities

  allow dyes have different forces of attraction for stationary
  phase

|      | allow dyes have different forces of attraction for mobile phase                                  |   |     |
|------|--------------------------------------------------------------------------------------------------|---|-----|
|      | allow dyes have different forces of attraction to the paper                                      |   |     |
|      | allow dyes have different forces of attraction to the solvent                                    |   |     |
|      | ignore density                                                                                   |   |     |
|      |                                                                                                  | 1 |     |
|      | (so dyes) move up the paper at different speeds / rates                                          |   |     |
|      | allow (so dyes) move different distances up the paper                                            |   |     |
|      | ignore references to time                                                                        |   |     |
|      | ig. nor a reverence to time                                                                      | 1 |     |
| (0)  | (because abramatagram bas) different data / calquira                                             |   |     |
| (c)  | (because chromatogram has) different dots / colours                                              | 1 |     |
|      |                                                                                                  |   |     |
|      | in a (vertical) column                                                                           |   |     |
|      | allow above the (original) spot                                                                  | 1 |     |
|      |                                                                                                  | • |     |
| (d)  | run known dyes and food colouring (as a chromatogram)                                            | _ |     |
|      |                                                                                                  | 1 |     |
|      | compare distances moved                                                                          |   |     |
|      | or                                                                                               |   |     |
|      | compare R <sub>f</sub> values                                                                    |   |     |
|      | (so) can identify those that move the same distance as known dyes                                |   |     |
|      | allow (so) can identify those that move different distances as                                   |   |     |
|      | unknown dyes                                                                                     |   |     |
|      | or                                                                                               |   |     |
|      | (so) can identify those that have the same R <sub>f</sub> values as known dyes                   |   |     |
|      | allow (so) can identify those that have different $R_f$ values as unknown dyes                   |   |     |
|      | ammonn ayou                                                                                      | 1 |     |
|      |                                                                                                  |   | [8] |
|      |                                                                                                  |   |     |
| Q5.  |                                                                                                  |   |     |
| (a)  | mobile phase / solvent moves through paper                                                       |   |     |
| ( )  |                                                                                                  | 1 |     |
|      | and carries substances different distances                                                       |   |     |
|      | and carries substances different distances                                                       | 1 |     |
|      |                                                                                                  |   |     |
|      | which depend on their attraction for paper and solvent                                           |   |     |
|      | allow which depend on solubility in solvent and attraction to                                    |   |     |
|      | paper                                                                                            | 1 |     |
| (1.) | Lavel 2 (2, 4 montes).                                                                           |   |     |
| (b)  | Level 2 (3–4 marks):  A relevant and coherent description which provides a clear analysis of the |   |     |
|      | chromatogram. The response makes logical links between the points raised and                     |   |     |
|      | uses sufficient examples                                                                         |   |     |
|      | to support these links.                                                                          |   |     |
|      | Lovol 1 (1-2 marks):                                                                             |   |     |

Simple statements are made which demonstrate a basic attempt to analyse the

chromatogram. The response may fail to make logical links between the points raised.

#### 0 marks:

No relevant content

#### **Indicative content**

- black ink is a mixture
- because more than one spot
- contains blue, red and yellow
- because Rf values / positions match
- does not contain green
- contains an unknown
- which is insoluble
- yellow is most soluble or has highest Rf value, blue is least

(c) both measurements from artwork for 1 mark (1.3  $\pm$  0.1 cm and 5.3  $\pm$  0.1 cm)

correct equation used for 1 mark

 $0.25 \pm 0.02$ 

accept 0.25 ± 0.02 without working shown for 3 marks allow ecf from incorrect measurement to final answer for 2

marks

[10]

4

1

1

1