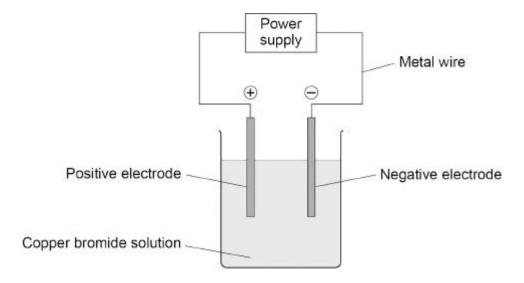
9.1	What is the reactivity series?	A list of elements ordered by their reactivity
9.2	How can metals be placed in order of their reactivity?	Add the metals to water or acid and see which ones react the most vigorously
9.3	What is the name for a reaction where oxygen is added to a substance?	Oxidation
9.4	What is the name for a reaction where oxygen is removed from a substance?	Reduction
9.5	Why are metals like gold and platinum found in the Earth's crust as pure metals?	They are unreactive
9.6	What process is used to extract metals less reactive than carbon?	Heating with carbon (reduction)
9.7	What process is used to extract metals more reactive than carbon?	Electrolysis
9.8	What is an ore?	A rock containing enough metal in it for it to be economically worthwhile to extract the metal
9.9	What is a displacement reaction?	A reaction in which a more reactive element takes the place of a less reactive element in one of its compounds or in solution
9.10	(HT) Define oxidation in terms of electrons	Oxidation is the loss of electrons (OIL)
9.11	(HT) Define reduction in terms of electrons	Reduction is the gain of electrons (RIG)
9.12	Define acid in terms of pH	A substance with a pH of less than 7
9.13	Which ions are present in all acids?	H ⁺ ions
9.14	State the three common acids and give their formulae	 Hydrochloric acid, HCI Sulfuric acid, H₂SO₄ Nitric acid, HNO₃
9.15	Which ions do the common acids form in solution?	 HCl forms H⁺ and Cl⁻ H₂SO₄ forms 2 H⁺ and SO₄²⁻ HNO₃ forms H⁺ and NO₃⁻
9.16	What is neutral solution?	A solution with a pH of 7 e.g. pure water

10.1	How do you measure pH?	With universal indicator or a pH probe
10.2	What colour would universal indicator be in: a) a strong acid b) a neutral substance c) a strong alkali	a) Red b) Green c) Purple (or blue)
10.3	What is base?	A metal oxide, hydroxide or carbonate that will react with (neutralise) acids. e.g. copper oxide
10.4	What is an alkali?	A soluble base. e.g. sodium hydroxide
10.5	Which ions are always present in a solution of an alkali?	OH ⁻ (hydroxide ions)
10.6	What is a salt?	A compound formed when an acid is neutralised
10.7	What type of salts are formed by the three main acids?	 Hydrochloric acid → metal chloride Sulfuric acid → metal sulfate Nitric acid → metal nitrate
10.8	What is a neutralisation reaction?	A reaction involving an acid and a base that results in a neutral solution
10.9	Which ions always react together in a neutralisation reactions between acids and alkalis?	H ⁺ and OH ⁻
10.10	Write the equation showing the reaction between H ⁺ and OH ⁻ ions	H⁺ + OH⁻ → H₂O
10.11	Complete the equation: metal + acid ->	→ salt + hydrogen
10.12	Complete the equation: metal hydroxide + acid →	→ salt + water
10.13	Complete the equation: metal oxide + acid →	→ salt + water
10.14	Complete the equation: metal carbonate + acid →	→ salt + water + carbon dioxide


How do you ensure that all the acid is neutralised when making a salt?	Use <u>excess</u> base
How do you remove the excess base?	Filter it
How do you make salt crystals from the salt solution?	Heat the solution in an evaporating dish, then leave rest of the water to evaporate slowly
(HT) What is a strong acid?	An acid which completely dissociates (breaks up) into H ⁺ ions in water
	e.g. when HCl is in water all the HCl molecules split up into H ⁺ and Cl ⁻
(HT) What is a weak acid?	An acid which only partially dissociates (breaks up) into H ⁺ ions in water
	e.g. in ethanoic acid only some of the molecules will have split up into the ethanoate ion and H ⁺ ions
(HT) What is the relationship between the strength of an acid and its pH?	Stronger acids have lower pH numbers (more acidic)
What is a concentrated acid?	An acid where there are lots of acid particles in a fixed volume of water
What is a dilute acid?	An acid where there are fewer acid particles in a fixed volume of water
(HT) How does pH depend on the concentration of H ⁺ ions in a solution?	As the concentration of H ⁺ increases by a factor of ten, the pH decreases by one (more acidic)
What is electrolysis?	Using electricity to produce elements by splitting up an ionic compound
Why does electrolysis only work with molten or aqueous ionic compounds?	So the ions are free to move (to the electrodes) and carry charge
What is the name for the positive electrode?	Anode
What is the name for the negative electrode?	Cathode
Why do positive ions move to the cathode? And negative ions move to the anode?	They are oppositely charged (opposites attract)
	is neutralised when making a salt? How do you remove the excess base? How do you make salt crystals from the salt solution? (HT) What is a strong acid? (HT) What is a weak acid? (HT) What is the relationship between the strength of an acid and its pH? What is a concentrated acid? What is a dilute acid? (HT) How does pH depend on the concentration of H+ ions in a solution? What is electrolysis? Why does electrolysis only work with molten or aqueous ionic compounds? What is the name for the positive electrode? What is the name for the negative electrode? Why do positive ions move to the cathode? And negative ions move

12.1	What are the electrodes usually made from?	Graphite (as it conducts electricity)
12.2	What is the main disadvantage of using electrolysis to extract metals?	Requires a large amount of energy to a) melt the compounds b) to produce the necessary electricity
12.3	Why is aluminium oxide dissolved in cryolite when extracting aluminium?	To lower the melting point
12.4	What is produced at the anode and cathode in the electrolysis of aluminium oxide?	Aluminium at the cathode and oxygen at the anode
12.5	Why do the graphite anodes need regularly replacing in the electrolysis of aluminium oxide?	 They are made from carbon which reacts with the oxygen forming carbon dioxide so they burn away
12.6	In electrolysis of molten ionic compounds, where is the metal produced?	Cathode (negative electrode)
12.7	In electrolysis of molten ionic compounds, where is the non-metal produced?	Anode (positive electrode)
12.8	What can happen to water molecules in the electrolysis of solutions?	They break down into hydrogen and hydroxide ions (H ⁺ and OH ⁻)
12.9	In the electrolysis of an aqueous ionic solution, when will hydrogen be produced?	If the metal is more reactive than hydrogen
12.10	In the electrolysis of an aqueous ionic solution, when will oxygen be produced?	If the non-metal is not a halogen (group 7 element)
12.11	(HT) Complete the half equations:	
	Al³+ → Al	Al ³⁺ + 3 e ⁻ → Al
	$H^+ \rightarrow H_2$	2 H ⁺ + 2 e ⁻ → H ₂
	_O ²⁻	2 O ²⁻ - 4 e ⁻ → O ₂
	$_OH^- \rightarrow O_2 + _H_2O$	$4 \text{ OH}^ 4 \text{ e}^- \rightarrow \text{O}_2 + 2 \text{ H}_2\text{O}$

FOUNDATION TIER

Q1. Copper bromide solution is electrolysed using inert electrodes.

The figure below shows the apparatus.

(a) Which particles carry the electrical charge through the metal wire?

Tick (✓) one box.

Electrons	
Neutrons	3 9
Protons	8

(1)

There are four ions in copper bromide solution:

- Cu²⁺
- Br -
- H⁺
- OH-
- (b) Two of these ions are formed when a water molecule breaks down.

The symbol equation when a water molecule breaks down is:

$$H_2O \to H^+ + OH^-$$

Complete the **word** equation for the breakdown of a water molecule.

water \rightarrow _____ ion + _____ ion

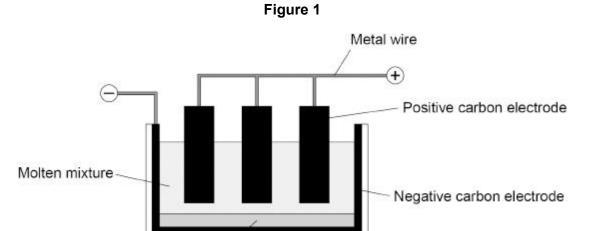
(2)

Copper ions and brom The formula of a copp	•	noar onarge un ough uno c	
The formula of a brom			
Vhat is the formula of	copper bromide? Tick	(√) one box.	
CuBr			
Cu ₂ Br			
CuBr ₂			
Explain why copper io	ns (Cu²+) move to the n	egative electrode.	
Complete the sentence	e. Choose the answer f	rom the box.	
Complete the sentence decomposed	e. Choose the answer f	rom the box.	
decomposed		distilled	
decomposed At the negative electron	discharged de copper metal is pro	distilled duced when the	
decomposed At the negative electron	discharged	distilled duced when the	
decomposed At the negative electro	discharged de copper metal is pro	distilled duced when the	sis?
decomposed At the negative electro	discharged de copper metal is pro	distilled duced when the	sis?
decomposed At the negative electron copper ions are What happens to the i	discharged de copper metal is pro	distilled duced when the	sis?
decomposed At the negative electron copper ions are What happens to the infick (✓) one box.	discharged de copper metal is pro	distilled duced when the	sis?
decomposed At the negative electron copper ions are What happens to the infinite (✓) one box. Decreases	discharged de copper metal is pro	distilled duced when the	sis?

There are four ions	in copper	bromide solution:
---------------------	-----------	-------------------

- Cu²⁺
- Br -
- H⁺
- OH-
- (g) What is produced at the **positive** electrode when copper bromide solution is electrolysed?

Tick (✓) one box.


Bromine	
Hydrogen	
Oxygen	

(1) (Total 9 marks)

Q2. This question is about extraction of metals.

Aluminium is extracted from a molten mixture of aluminium oxide and cryolite using electrolysis.

Figure 1 shows the electrolysis cell.

(a) Complete the sentence.

Molten aluminium

The extraction of aluminium is expensive because the process uses large amounts of ______.

(1)

(b) Oxygen is produced at the positive carbon electrodes.

The oxygen reacts with the carbon electrodes.

Which gas is produced when oxygen reacts with the positive carbon electrodes?

(1)

Titanium is extracted from titanium chloride by reacting titanium chloride with sodium.

The reaction between titanium chloride and sodium is carried out in an inert atmosphere.

(c) Suggest why the reaction is carried out in an inert atmosphere.

(1)

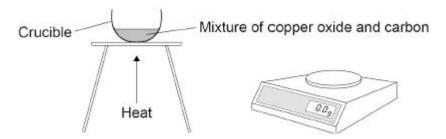
(d) Complete the sentence.

Choose the answer from the box.

	argon	chlorine	hydrogen
--	-------	----------	----------

The gas used for the inert atmosphere is ______.

(1)


(e) Balance the equation for the reaction.

$$TiCl_4 + 4 Na \rightarrow Ti + \underline{\hspace{1cm}} NaCl$$
 (1)

Copper is extracted from copper oxide by reacting copper oxide with carbon.

Figure 2 shows the apparatus.

Figure 2

The equation for the reaction is:

$$2 \text{ CuO}(s) + \text{C}(s) \rightarrow 2 \text{ Cu}(s) + \text{CO}_2(g)$$

In an experiment 15.9 g of copper oxide and 1.2 g of carbon reacted.

12.7 g of copper was produced in the reaction.

	Mass of carbon dioxide = g
Explain why the mass of the content	s in the crucible changed during the experiment.
What happens to copper oxide in the	e reaction?
Give one reason for your answer.	
Use the equation for the reaction.	
Tick (✓) one box.	
The copper oxide is dissolved	
The copper oxide is oxidised	
The copper oxide is reduced	
Reason	

Q3. A student investigated the temperature change when metal **X** was added to copper sulfate solution. This is the method used.

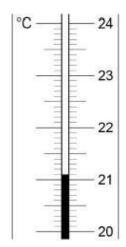

- 1. Add 25 cm³ of copper sulfate solution to a beaker.
- 2. Measure the temperature of the copper sulfate solution.
- 3. Add 1.0 g of metal **X** and stir.
- 4. Measure the highest temperature reached when metal **X** is added to copper sulfate solution.
- 5. Repeat steps 1 to 4 with different metals.

Figure 1 shows the apparatus used.

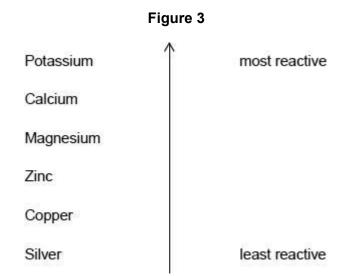
Beaker Copper sulfate solution

Figure 2 shows the thermometer reading of the copper sulfate solution at the start of the investigation.

Figure 2

(a) The highest temperature reached when metal ${\bf X}$ was added to copper sulfate solution was 35.5 °C

Determine the temperature change when metal **X** is added to copper sulfate solution.


Use Figure 2.

Highest temperature =	35.5	°C
Temperature at start =		°C
Temperature change =		°C

2					
The student repea	ated the exper	iment with	n metal Y .		
Table 1 shows for	ur results for n	netal Y .			
	Table	e 1			
	Test 1	Test 2	Test 3	Test 4	
Temperature change in °C	9.2	7.3	9.5	9.2	
Calculate the mea	an temperature	e change	for metal	Υ.	
Do not include the	e anomalous r	esult in yo	our calcul	ation.	

The more reactive the metal added to copper sulfate solution, the greater the temperature change.

Figure 3 shows a reactivity series.

(d) The student repeated the experiment.

The student added:

- magnesium to copper sulfate solution
- an unknown metal A to copper sulfate solution.

Table 2 shows the results.

Table 2

Metal	Temperature change in °C
Magnesium	12
Metal A	8

The student concludes metal **A** is zinc.

Give **one** reason why the student is correct.

Use Figure 3 and Table 2.

(1)

	copper sulfate in 25 cm³ of this copper sulfate solution. Mass =
	copper sulfate in 25 cm³ of this copper sulfate solution.
	copper sulfate in 25 cm³ of this copper sulfate solution.
	copper sulfate in 25 cm³ of this copper sulfate solution.
	copper sulfate in 25 cm³ of this copper sulfate solution.
100 cm ³ of the copper	
	sulfate solution contains 1.8 g of copper sulfate.
sulfate solution.	
	why the student should not add potassium metal to copper
otays the same	
Stays the same	
Increases	
Decreases	
rick (v) one box.	
-	
wnat nappens to tne te Use Figure 3 . Tick (√) one box.	emperature of the mixture?

Q4. Acid the mix		ersal indicator is added to water and then nitric acid is added
(a)	Give the colour change when	acid is added to the mixture of universal indicator and water.
	Tick (✓) one box.	
	Blue to red	
	Green to purple	
	Green to red	
	Red to purple	
		(1)
(b)	What happens to the pH of w	rater when nitric acid is added? Tick (✓) one box.
	Decreases	
	Stays the same	
	Increases	
()		(1)
(c)	What is the state symbol for r	nitric acid?
		(1)
Zinc	carbonate reacts with nitric ac	id. The word equation for the reaction is:
		icid → zinc nitrate + water + carbon dioxide
	white solid	colourless solution
(d)	Give two observations that water acid until the zinc carbonate	ould be made when zinc carbonate is added to nitric is in excess.
	1	
	2	

,	^	١
l	Z)

The formula of the zinc ion is Zn²+ The formula of the nitrate ion is NO₃- What is the formula for zinc nitrate?	
What is the formula for zinc nitrate?	
Tick (✓) one box.	
ZnNO ₃	
Zn(NO ₃) ₂	
Zn ₂ NO ₃	
Zn ₂ (NO ₃) ₂	
Acids react with insoluble metal oxides to produce salts.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	
from an acid and a metal oxide.	

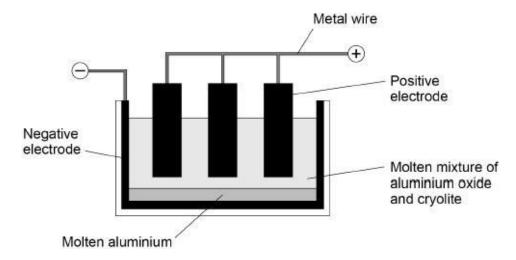
(Total 12 marks)

HIGHER TIER

Q5. This question is about the extraction of aluminium.

(a) An aluminium atom is represented as:

Give the number of electrons and neutrons in the aluminium atom.


Number of electrons _____

Number of neutrons _____

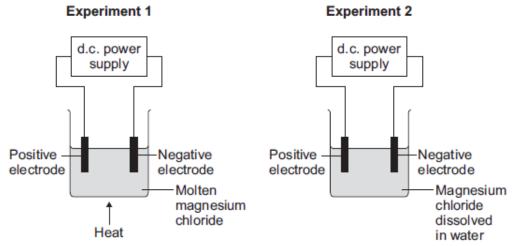
(2)

Aluminium is extracted by the electrolysis of a molten mixture of aluminium oxide and cryolite.

The diagram below shows the cell used for the electrolysis.

(b)) Aluminium i	s produced by	y the reduction of	of aluminium	oxide (Al ₂ O ₃)
-----	---------------	---------------	--------------------	--------------	---

What is meant by the term reduction?


14	١.
1	- 1

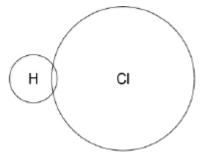
(c) Oxygen is formed at the positive carbon electrodes.

Explain why the positive carbon electrodes must be continually replaced.

(3)

(d) A substance conducts electricity because of free moving, charged particles. What are the free moving, charged particles in a: carbon electrode (made from graphite) molten mixture of aluminium oxide and cryolite metal wire? Carbon electrode (made from graphite) Molten mixture of aluminium oxide and cryolite Metal wire _____ (3) (Total 9 marks) **Q6.** This question is about magnesium and magnesium chloride. Magnesium chloride contains magnesium ions (Mg²⁺) and chloride ions (Cl⁻). (a) Describe, in terms of electrons, what happens when a magnesium atom reacts with chlorine atoms to produce magnesium chloride. (4) Magnesium chloride can be electrolysed. (b) The diagram below shows two experiments for electrolysing magnesium chloride.

	Explain how magnesium is produced at the negative electrode in Experiment 1
	In Experiment 2 a gas is produced at the negative electrode. Name the gas produced at the negative electrode.
	Suggest why magnesium is not produced at the negative electrode in Experiment 2 .
	Complete and balance the half equation for the reaction at the positive electrode. Cl⁻ → Cl₂ +
	nesium is a metal.
а _	nin why metals can be bent and shaped.


(c)

elec	rogen gas and chlorine gas are produced when sodium chloride solution is trolysed.
(a)	Hydrogen ions (H ⁺) are attracted to the negative electrode.
	The half equation for the reaction at the negative electrode is:
	$2~H^+$ + $2~e^ \rightarrow$ H_2
	What type of reaction happens at the negative electrode?
	Give the reason for your answer.
	Type of reaction
	Reason
(h)	Chloride ions are attracted to the positive electrode.
(b)	
	Complete the half equation for the production of chlorine gas (Cl ₂).
	Cl−
(c)	Hydrogen gas and oxygen gas are produced when sodium sulfate solution is electrolysed.
	Explain how oxygen gas is produced in the electrolysis of sodium sulfate solution.

Q7. This question is about the electrolysis of aqueous solutions.

Q8. Hydrogen chloride (HCI) is a gas.

(a) Complete the diagram to show all of the arrangement of the outer shell electrons of the hydrogen and chlorine atoms in hydrogen chloride.

(1)

(b) Hydrochloric acid is a strong acid. Ethanoic acid is a weak acid.

Describe a reaction that could be used to show the difference between a weak acid and a strong acid.

You should explain why the weak acid and the strong acid give different results.

(6)

(Total 7 marks)

Mark schemes

Q1				
	(a)	electrons	1	
	(b)	(water →) hydrogen (ion) + hydroxide (ion) allow for 1 mark hydrogen (ion) allow for 1 mark hydroxide (ion)	2	
	(c)	$CuBr_2$	1	
	(d)	(copper ions) are positive(ly charged)	1	
		(so are) attracted (to the negative electrode)	1	
	(e)	discharged	1	
	(f)	increases	1	
	(g)	bromine	1	
				[9]
Q2	. (a)	energy / electricity	1	
	(b)	carbon dioxide	1	
	(c)	sodium reacts with air / oxygen or sodium is highly reactive allow titanium (chloride) reacts with air / oxygen	1	
	(d)	argon	1	
	(e)	TiCl₄ + 4 Na → Ti + 4 NaCl allow multiples		
	(f)	4.4 (g)	1	
	(g)	(the) mass decreased	1	

	(because) carbon dioxide escapes (into the atmosphere) allow (because) carbon dioxide is a gas	
	allow (because) a gas is produced	1
(h)	the copper oxide is reduced	1
	(reason) (copper oxide) loses oxygen	1 [10]
Q3.		
(a)	21.1 (°C)	1
	14.4 (°C) allow correct use of an incorrect start temperature	1
(b)	any two from:	•
	 surface area of metal 25 cm³ / volume of copper sulfate solution concentration of copper sulfate solution mass / 1 g of metal ignore amount ignore temperature ignore stirring 	2
(c)	$\frac{9.2 + 9.5 + 9.2}{3}$ or $\frac{27.9}{3}$	1
	= 9.3 (°C) if no other mark awarded allow 1 mark for 8.8 (°C)	1
(d)	(metal A / zinc) is less reactive (than magnesium) or (metal A / zinc) is lower in reactivity series or change in temperature is lower (with metal A / zinc)	
	allow converse	1
(e)	stays the same	1
(f)	too dangerous or	

allow potassium would react with water	allow	potassium	would	react	with	water
--	-------	-----------	-------	-------	------	-------

(g) $\frac{25}{100} \times 1.8$ or $\frac{1}{4} \times 1.8$

= 0.45 (g)

[11]

1

1

Q4.

- (a) green to red
- (b) decreases
- (c) (aq) $allow \ aq \\ ignore \ aqueous \\ ignore \ HNO_3$ 1
- (d) any two from:
 - (white) solid disappears
 - fizzing or bubbles (of gas) or effervescence allow a gas is produced
 - (then) stops fizzing
 - (white) solid left at the end / bottom ignore colourless solution

(e) $Zn(NO_3)_2$

(f) **Level 3:** The method would lead to the production of a valid outcome. The key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

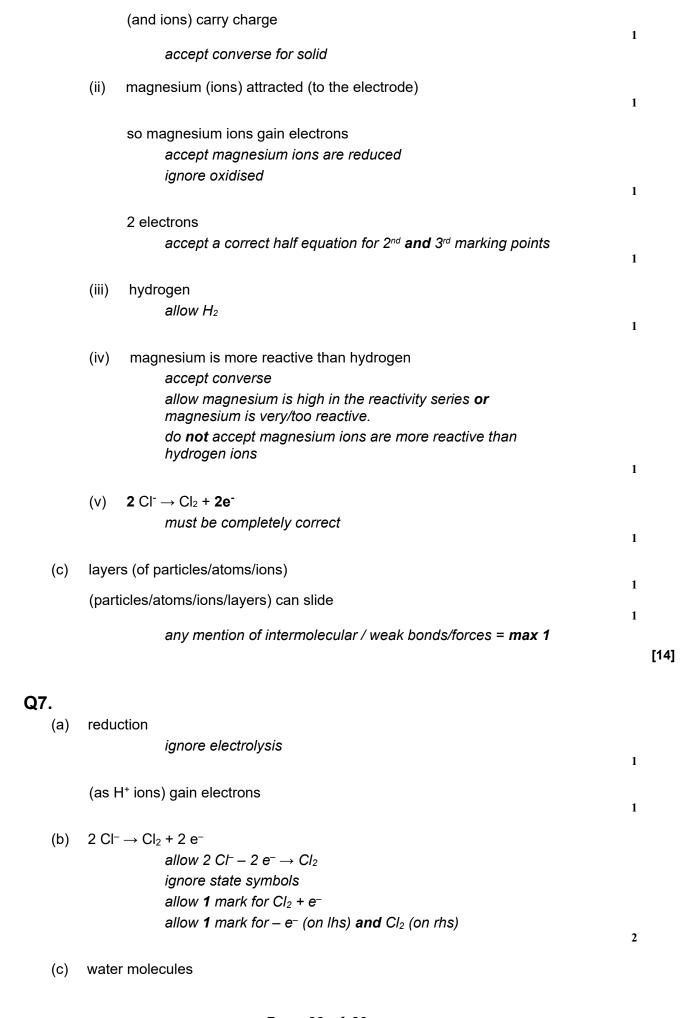
Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

0

2

5-6


3-4

Indicative Content:

	•	react hydrochloric acid	
	•	(with) copper oxide	
	•	in a suitable container	
	•	warm (hydrochloric) acid	
	•	add copper oxide	
	•	until is in excess or until solid remains	
	•	stir	
	•	filter excess copper oxide	
	•	pour solution / filtrate into evaporating basin	
	•	use of water bath	
	•	use of electric heater	
	•	to heat gently	
		or partially evaporate	
	•	leave to cool / crystallise	
	For I	evel 3 the correct chemicals must have been selected.	
			[12]
Q5. (a)			
		this order only	
	13		1
	14		
			1
(b)	loss	of oxygen allow (Al³+) gain of electrons allow aluminium oxide loses oxygen	
		anow alammam oxide loose oxygen	1
(c)		allow anode for (positive) electrode	
	(at h	igh temperature) oxygen reacts with carbon / electrode	1

	(so the positive) electrode burns / wears away	1
	to produce carbon dioxide	
	$C + O_2 \rightarrow CO_2$ scores MP1 and MP3	
		1
(d)	(delocalised) electron(s)	1
	ion(s)	
		1
	(delocalised) electron(s)	1
		1
Q6.	manusaium lagas tura alagtusus and ablavina gaina ana alagtusus	
(a)	magnesium loses two electrons and chlorine gains one electron accept magnesium loses electrons and chlorine gains	
	electrons for 1 mark	
	ignore oxidation and reduction	2
	one magnesium and two chlorines	
	accept MgCl₂	
		1
	noble gas structure	
	or	
	eight electrons in the outer shell	
	accept full outer shell (of electrons)	
	or	
	(electrostatic) attraction between ions	
	or	
	forms ionic bonds	
	do not accept covalent bonds	•
	reference to incorrect particles or incorrect bonding or incorrect structure = max 3	1
(b)	(i) because ions can move	
	ignore ions attracted	
	do not accept molecules / atoms moving do not accept incorrect reference to electrons moving	
	do not doopt moon out forontoned to didutions moving	1
	(and ions move) to the electrodes	
	or	

[9]


```
break down to produce OH<sup>-</sup> ions

allow dissociate to produce OH<sup>-</sup> ions

1

(which are) attracted to the positive electrode

(where OH<sup>-</sup> ions are) oxidised

or

(where OH<sup>-</sup> ions) lose electrons

ignore discharged

ignore oxygen is produced as no halide is

present
```

[8]

1

1

Q8.

(a) bonded pair of electrons and

6 non-bonded electrons on chlorine

(b) **Level 3 (5–6 marks)**:

A detailed and coherent explanation of comparative results of a reaction in terms of concentration and ionisation. The response makes logical links between the points raised and uses sufficient examples to support these links.

Level 2 (3-4 marks):

A description of a reaction with results is given but may miss some details. Links are made but may not be fully articulated and / or precise.

Level 1 (1-2 marks):

Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:

No relevant content

Indicative content

Simple statements / descriptions of a reaction

- correct comparative pH, such as, 0–3 (strong) 4–6 (weak)
- named reaction, such as, with a reactive metal or a named carbonate
- comparative results or observations of the named reaction, such as, faster reaction (strong) or greater volume of gas produced in a given time (strong)

Explanations of different results

- weak acids are only partially ionised in aqueous solution
- strong acids are completely ionised in aqueous solution / greater concentration of H⁺ ions
- aqueous solutions of acids at the same concentration / same state of division of metal / powder, same temperature

(

[7]