C2: Bonding and Structure 1

ANSWER KEY

5.1	What are the three types of bonds?	Covalent, ionic and metallic
5.2	What happens to the electrons in an ionic bond?	They are transferred from a metal atom to a non-metal atom
5.3	If an atom has gained electrons, what charge will it have as an ion?	Negative
5.4	If an atom has lost electrons, what charge will it have as an ion?	Positive
5.5	What type of elements will form ionic bonds?	Metal + non-metal
5.6	What is the charge on ions from group one and two?	• Group 1: 1+ • Group 2: 2+
5.7	What is the charge on ions from group six and seven?	 Group 6: 2- Group 7: 1-
5.8	Describe the structure and bonding in an ionic compound	Giant ionic lattice (repeating structure) held together by strong electrostatic forces of attraction between positive and negative ions
5.9	What kind of melting and boiling points do ionic compounds have?	High
5.10	Explain the melting and boiling points of ionic compounds	 High due to strong electrostatic forces of attraction between the many ions which require a lot of heat energy to break
5.11	Explain why ionic compounds do not conduct electricity when solid	The ions are not free to move and carry charge
5.12	Explain why ionic compounds conduct electricity when molten (melted) or in aqueous solution	The ions are free to move and carry charge
		·

C2: Bonding and Structure 2

ANSWER KEY

6.1	What happens to the electrons in a covalent bond?	They are shared
6.2	What type of elements will form covalent bonds?	Non-metal + non-metal
6.3	What two types of substance have covalent bonds?	 Giant covalent substances (macromolecules) - like diamond and graphite Small molecules (simple molecular) - like methane, CH₄, water, H₂O and ammonia NH₃
6.4	How many bonds does each carbon atom have in diamond? And in graphite?	4 3
6.5	Explain why macromolecules like diamond, graphite and silicon dioxide have high melting points	 Giant (repeating) / lattice structures Many strong covalent bonds between the atoms Requires a lot of heat energy to break
6.6	Explain why most covalent substances do not conduct electricity	There are no delocalised electrons or ions that are free to move and carry charge
6.7	Making reference to structure and bonding in graphite, explain how it conducts electricity	 Each carbon has only 3 bonds leaving 1 delocalised electron per atom which is free to move through the structure and carry charge
6.8	Explain why graphite can act as a lubricant and can be used in pencils	 Layered structure with weak forces between layers which are free to slide over each other
6.9	What type of substance are methane and water?	Small covalent molecules (simple molecular)
6.10	Describe the structure and bonding in small molecules	Strong covalent bonds between atoms weak forces between the molecules
6.11	Explain why small molecules have low melting points	 Weak forces of attraction between the molecules which are easy to break with only a little heat energy

C2: Bonding and Structure 3

ANSWER KEY

7.1	What is a polymer?	A long chain molecule made by joining many small molecules (monomers) together
7.2	Why do larger molecules have higher melting points than smaller ones?	 Bigger molecules have stronger forces of attraction between the molecules so need more heat energy to separate
7.3	What is graphene?	A single layer of graphite
7.4	What is graphene used for?	Electronics (as it is a good electrical conductor) and composites
7.5	What is fullerene?	Molecule made of carbon atoms arranged in a cage or tube
7.6	What is the formula of Buckminsterfullerene?	C ₆₀
7.7	What are nanotubes?	Cylindrical fullerenes made from hexagonal rings of carbon
7.8	What are nanotubes used for?	Electronics (also nanotechnology and composite materials)
7.9	Describe the bonding in metals	 Lattice (repeating structure) of metal ions surrounded by delocalised electrons
7.10	Explain why metals generally have high melting points	 Strong attraction between the metal ions and the delocalised electrons which requires a lot of heat energy to break
7.11	Explain why metals conduct electricity	 Metals have delocalised electrons which are free to move through the structure and carry charge
7.12	Explain why metals are malleable (bendable) and ductile (can be pulled into wires) without breaking	 Layers of ions can slide past each other (and the) delocalised electrons move with them
7.13	Explain why alloys (mixtures of metals) are harder and stronger than pure metals	 Metal atoms are different sizes layers of atoms are distorted so layers can't slide past each other

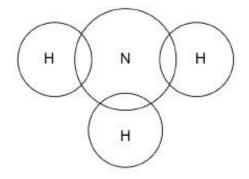
Recognising Structures and Types of Bonding

Diagram	Type of bonding	How do we know?	Melting and boiling points	Electrical conductivity
- 	lonic e.g. sodium chloride, NaCl	Has both positive <u>and</u> negative ions (metal and non-metal)	All the substances with giant repeating structures will have	Only when molten or dissolved in water, as the ions are then free to move and carry charge
	Macromolecular Covalent (giant covalent) Diamond	Has a giant repeating structure, but no ions	very high melting and boiling points	No – has no delocalised electrons Carbon atoms form 4 covalent bonds
	Macromolecular Covalent (giant covalent) Graphite	Has a giant repeating structure, but no ions, and is in hexagonal layers	This is because they contain a <i>lot of strong bonds</i> (ionic, covalent or metallic) so require a <i>lot of heat energy to break these bonds</i>	Yes – has delocalised electrons Carbon atoms only form 3 covalent bonds
	Macromolecular Covalent (giant covalent) A fullerene	Has a giant repeating structure, but no ions	If you can see a lot of atoms or ions in a lattice or large regular structure, <i>high</i>	Yes – has delocalised electrons Carbon atoms only form 3 covalent bonds
(†) (†) (†) (†) (†) (†) (†) (†) (†) (†)	Metallic e.g. copper, Cu	Has positive ions surrounded by delocalised electrons in a giant repeating structure	melting and boiling points	Yes – has delocalised electrons that are free to move through the structure and carry charge
H	Simple (molecular) covalent Made from small molecules e.g. water, H ₂ O	It has no ions (so must be covalent) and is only a small group of atoms	Low melting and boiling points Strong covalent bonds between atoms but Weak attraction between molecules so very little heat energy needed to separate the molecules	No – has no delocalised electrons

FOUNDATION TIER

. Car	bon can exist in a number of different structures.
(a)	What is the approximate radius of a carbon atom? Tick (✓) one box.
	0.1 m 0.1 mm 0.1 nm
In gr	raphite the carbon atoms are held together by bonds.
Figu	re 1 represents part of the structure of graphite.
	Layer of carbon atoms
	Carbon atom
(b)	How many bonds does each carbon atom have in graphite?
	Use Figure 1 . Tick (✓) one box.
	1 2 3 4
(c)	What type of bonds hold the carbon atoms together in graphite? Tick (✓) one box.
	Covalent
	lonic
	Metallic
(d)	Lubricants allow objects to slide over each other easily.
	Suggest why graphite can be used as a lubricant. Use Figure 1.

(e) The two structures represent different forms of carbon.


Draw **one** line from each structure to the form of carbon.

Structure | Buckminsterfullerene | | Diamond | | Graphene | | Nanotube |

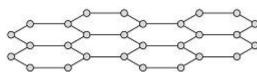
The diagram below shows the outer electron shells in an ammonia molecule.

Complete the diagram to show a dot and cross diagram for an ammonia molecule.

Show the outer shell electrons only. Nitrogen is in group 5 of the periodic table.

(2) (Total 14 marks)

(2)


Q2. This question is about graphene and graphite.

Graphene is a single layer of graphite.

To produce polymers

Figure 1 represents part of the structure of graphene.

Figure 1

		0 0 0	
(a)	Graphene is one atom	thick. The diameter of the atom is 3.4×10^{-10} m	
	What is the thickness of	of a graphene layer in nanometres?	
	1 nm = 10 ⁻⁹ m		
	Tick (✓) one box.		
	0.034 nm		
	0.34 nm		
	3.4 nm		
	34 nm		
			(1)
(b)	Which is one use of gra	aphene?	
	Tick (✓) one box.		
	As a detergent		
	As a solvent		
	In composites		

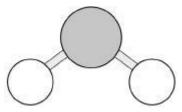

(1)

Figure 2 represents p	part of the structure of graphite.	
	Figure 2	
Graphite is used as a	contact in electric motors because graphite:	
conducts electri	icity	
Explain why graphite	has these properties.	
You should refer to th	ne structure and bonding of graphite in your answer.	

(Total 9 marks)

Q3. This question is about substances with covalent bonding.

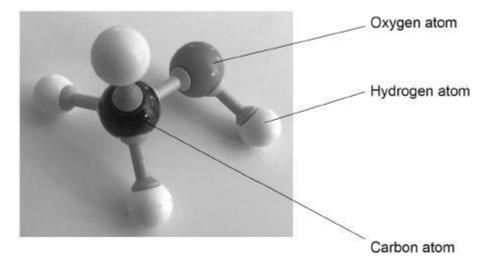
(a) The diagram below shows a ball and stick model of a water molecule (H₂O).

Suggest **one** limitation of using a ball and stick model for a water molecule.

(1)

(b) Ice has a low melting point.

Water molecules in ice are held together by intermolecular forces.


Complete the sentence.

Ice has a low melting point because the intermolecular forces are

·

(1)

(c) The image below shows the structure of a molecule.

What is the molecular formula of the molecule in the above image?

(1)

Dian	nond has a giar	nt covalent struc	cture.		
(d)	d) What is the number of bonds formed by each carbon atom in diamond?				
	Tick (✓) one k	oox.			
	2	3	4	8	
(e)	Give two phys	sical properties	of diamond.		(1)

(f)	Name two other su	ubstances with gian	t covalent structures.

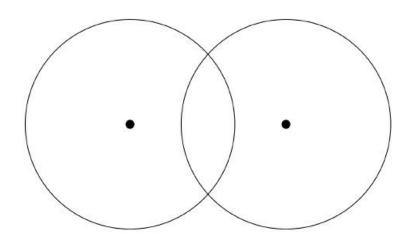
1._____

2. _____

(Total 8 marks)

(2)

(2)


HIGHER TIER

- **Q4.** This question is about structure and bonding.
 - (a) Oxygen is in Group 6.

The diagram shows the outer shells in an oxygen molecule.

Complete the dot and cross diagram.

You should show only the electrons in the outer shell.

(2)

Oxygen forms many cor	mpounds.	
Which two compounds of	of oxygen are small molecules? Tick two boxes.	
Carbon dioxide		
Magnesium oxide		
Potassium oxide		
Silicon dioxide		
Water		
Explain why metals cond	duct electricity.	
Refer to structure and be		

(Total 11 marks)

b)	The	bonding in iodine is similar to the bonding in chlorine.
	(i)	Complete the diagram below to show the bonding in iodine.
		Show the outer electrons only.
		I I
	(ii)	Explain why iodine has a low melting point.
	(iii)	Explain, in terms of particles, why liquid iodine does not conduct electricity.

(Total 11 marks)

Mark schemes

Q1 . (a)	0.1 nm	1
(b)	3	1
(c)	covalent	1
(d)	layers slide (over each other) allow atoms slide over each other	1
(e)	Structure Form of carbon	
	Buckminsterfullerene Diamond	
	Graphene Nanotube	
	do not accept more than one line from a box on the left	1 1
(f)	3 bonding pairs of electrons	1
	lone pair of electrons on the nitrogen atom	1
		[14]

Q2.

- (a) 0.34 nm
- (b) in composites

1

(c) must be a comparison

graphene is any **one** from:

- better conductor (of electricity)
- allows greater miniaturisation of electronic circuits allow thinner

	allow converse for graphite		
		1	
(d)	Level 3: Relevant points (reasons / causes) are identified, given in detail and logically		
	linked to form a clear account.	5–6	
	Level 2 : Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	3–4	
	Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking. Indicative content		
	 Structure and bonding giant structure / lattice / repeating structure of carbon atoms 		
	 in layers of hexagonal rings covalent (bonds) strong (covalent) bonds 		
	 where each (carbon) atom bonded to three other (carbon) atoms one electron on each atom is delocalised 		
	Explanation for conductivityhas delocalised electrons		
	(which) are free to moveand carry charge through the structure		
	 Explanation for graphite being slippery layers free to slide over each other (because) only weak (intermolecular) forces between layers 		
Q3.			
(a)	any one from:		
	not to scale allow size of atoms incorrect		
	 not 3 dimensional / D incorrect arrangement in space 		
	allow atoms are separatedelectrons / shells not shown		
	ignore properties of water	1	
(b)	weak allow weaker	1	
(c)	CH₄O allow CH₃OH		

[9]

stronger harder more flexible

	(d)	4	1			
	(e)	any two from:				
		(very) hard allow strong				
		(very) high melting point				
		does not conduct electricity allow high thermal conductivity ignore shiny	2			
	(f)	graphite				
		allow graphene	1			
		silicon dioxide allow silica allow silicon allow polymer(s) or allow (named) polymer(s) allow fullerene or allow carbon nanotubes ignore buckminsterfullerene	1			
Q4.	(a)	4 electrons shared	1			
		each atom has 4 unshared electrons outside the bond	1			
	(b)	small molecules allow simple / small molecular structure	1			
		with weak intermolecular forces allow weak forces between molecules	1			
		(which) require little energy to overcome must be linked to second marking point	1			
	(c)	carbon dioxide	1			
		water	1			
	(d)	giant structure / lattice / repeating structure of metal ions	1			
		delocalised electrons	1			

[8]

	(delocalised electrons) are free to move through the whole structure			
	and	carry charge	1 [11]	
Q5. (a)	lattic	ee / giant / repeating structure max 3 if incorrect structure or bonding or particles	1	
	ionic	or (contains) ions	1	
	Na⁺	and Cl- accept in words or dot and cross diagram: must include type and magnitude of charge for each ion	1	
	elec	trostatic attraction allow attraction between opposite charges	1	
(b)	(i)	one bonding pair of electrons accept dot, cross or e or – or any combination, eg		
		6 un-bonded electrons on each atom	1	
	(ii)	simple molecules max 2 if incorrect structure or bonding or particles accept small molecules accept simple / small molecular structure	1	
		with intermolecular forces accept forces between molecules must be no contradictory particles	1	
		which are weak or which require little energy to overcome – must be linked to second marking point reference to weak covalent bonds loses second and third marking points	1	
	(iii)	iodine has no delocalised / free / mobile electrons or ions	1	
		so cannot carry charge if no mark awarded iodine molecules have no charge gains 1 mark	1 [11]	