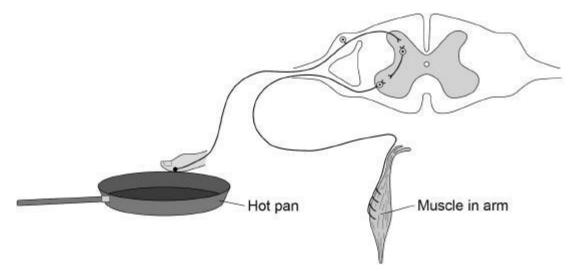
Answer Key

12.1	What is the role of the human nervous system?	The nervous system detects stimuli from the internal or external environment and uses electrical impulses to bring about the fast, but short-lived, responses.
12.2	Describe 2 ways of measuring reaction time.	Dropping a ruler and catching it, computerised tests involving pressing a button in response to seeing something on the screen – time recorded by the computer
12.3	Summarise the order in which the nervous system works?	Stimuli, receptor, sensory neurone, CNS, motor neurone, effector, response
12.4	Name 3 types of neuron.	Sensory, Motor and Relay
12.5	What is a synapse and how does it work?	 The methods by which the nervous impulse crosses the gap between neurones. Impulse arrives at the end of neurone A Neurotransmitter is released into the synaptic gap Neurotransmitter diffuses across the synaptic gap Neurotransmitter binds to the receptors on neurone B A new electrical impulse is generated in neurone B
12.6	What neurone is involved in a reflex?	Relay
12.7	Why are reflexes important?	Reaction remove your body from danger.
12.8	Why are reflexes faster?	The do not involve the conscious part of the brain , therefore no conscious thought
12.9	What is a receptor? State 3 examples.	Cells that detect stimuli (changes in the internal or external environment). Eyes, ears, skin, thermoreceptors, pressure receptors, tongue, nose
12.10	What is a stimulus?	A change in the environment(internal/external)
12.11	What carries out a response? Give 3 examples.	Effectors – Muscle, gland or Organ
12.12	How is a nerve cell adapted?	 The cell body contains cytoplasm and nucleus (the control centre of the cell) The axon is a long extension of the cytoplasm (can be up to 1m). this means nerve impulses can be transmitted to the extremities by 1 cell. The myelin sheath is a fatty layer that surrounds to axon. The sheath act as an insulator and spreads up nerve impulses. The branched ends of the axon and the smaller branches coming from the cell body allow the neurone to make connections with other neurones.

Section 13 – Endocrine System

Answer Key

13.1	What is the endocrine system made of?	Glands which secrete hormones
13.2	How are chemical messages transported around the body?	Glands release hormones into the bloodstream which then travel to the target organ to produce an effect.
13.3	What is produced if blood glucose is a) Too high b) Too Low	a) Insulin b) Glucagon
13.4	Name 2 places in the body where glycogen is stored.	Muscles and Liver cells
13.5	What is the process called that restores the body back to normal levels?	Negative feedback
13.6	Name the hormones involved in reproduction (male and female)	Testosterone Oestrogen Follicle stimulating hormone Luteinising hormone
13.7	State the names and function of the hormones in the menstrual cycle.	FSH – matures the egg Oestrogen – Causes the uterus lining to thicken and stop FSH production LH – releases the mature egg
13.8	What are the 2 main categories of contraception ?	Physical barriers and chemical methods
13.9	Summarise the stages of IVF.	 Mother given FSH and LH to mature several eggs Eggs are collected from the mother and by sperm from the father in a lab. Fertilised eggs develop into embryos Some Embryos are inserted into the mothers uterus
13.10	State 2 advantages and disadvantages of fertility treatment.	Disadvantages – emotionally and physically stressful, low success rate, multiple births Advantages – allows pregnancy when not possible, embryo screened for genetic disorders


Foundation Tier

Q1.

Human reactions are a response to an external change.

(a) Reflex actions help to protect the body against damage.

The diagram below shows the nervous pathway for a reflex action.

A stimulus from the hot pan will cause the muscle in the arm to contract and move the finger away.

Describe how the stimulus from the hot pan reaches the muscle in the arm.

(b) A student investigated whether using the right hand or the left hand had an effect on reaction time.

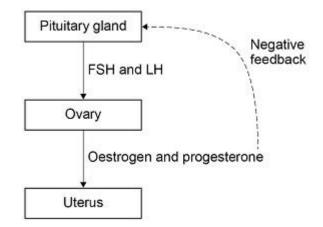
The student only tested right-handed people.

Describe a method for the student's investigation.

Include details of the test you would use for reaction time.

A different student carried out an investigation to see if playing tennis improved reaction time.

The student used two groups of six people.


The table below shows the results.

Dereen	Reaction time in seconds				
Person	People who play tennis	People who do not play tennis			
1	0.2	0.3			
2	0.4	0.4			
3	0.3	0.6			
4	0.4	0.5			
5	0.2	0.3			
6	0.3	0.2			
Mean	X	0.4			

(c)	Calculate mean value X in the table above.	
	X = seconds	
(d)	What is the dependent variable in the student's investigation?	
The	student concluded:	
	'Playing tennis improves reaction time.'	
(e)	Give one piece of evidence which supports the conclusion.	
(f)	Give one piece of evidence which does not support the conclusion.	
	(Total 13 n	nark
Horn	nones can have effects on the body far from the gland that releases the hormone.	
(a)	Name the system in the body that releases hormones.	

(1)

The diagram shows part of the hormonal control of the menstrual cycle.

- (b) Describe how FSH and LH travel from the pituitary gland to the ovaries.
- (c) Explain how the body regulates the production of oestrogen and progesterone for most of the menstrual cycle.

Use the information shown in the diagram above.

(d) A woman is most fertile at about day 15 of the menstrual cycle.

From day 12 to day 14 of the menstrual cycle, the negative feedback shown in the figure above stops.

Explain what happens when the negative feedback stops.

(3)

(1)

(e) A contraceptive injection contains progestin.

Progestin is a synthetic form of progesterone.

Explain how the progestin injection prevents pregnancy.

(4) (Total 12 marks)

Higher Tier

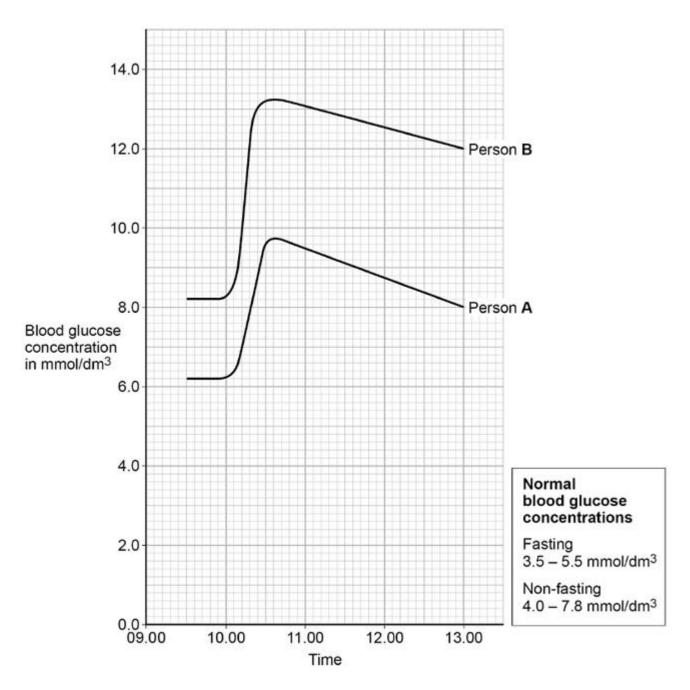
Q3.

This question is about homeostasis.

(a) Define the term homeostasis.

(b) Name the hormone released if the blood glucose concentration falls too low.

Two people were sent to a hospital to find out if they have diabetes.


This is the method used at the hospital.

- Do not eat or drink after midnight. This is called fasting.
- Measure blood glucose concentration at 9.30 am
- Drink a glucose solution at 10.00 am
- Measure blood glucose concentration for the next 3 hours.

The graph shows the results.

(2)

(1)

Person **A** and person **B** have diabetes.

(c) Describe how the graph above shows that person **B** has diabetes.

Use data from the graph.

(d) Person **A** and person **B** had a test to measure the concentration of insulin in their blood when they were fasting.

The table shows the results.

Person	Fasting blood insulin concentration in arbitrary units
Α	280
В	20
Normal range	50–175

Suggest which type of diabetes person **A** and person **B** have.

Give a reason for each answer.

Person A

Type of diabetes

Reason _____

Person B

Type of diabetes _____

Reason _____

- (e) Toxic hypoglycaemia syndrome (THS) has caused the deaths of hundreds of starving children in some tropical countries.
 - The starving children have had nothing to eat all day.
 - The starving children then eat many lychee fruits.
 - The lychee fruits contain a molecule which stops an enzyme in the liver working.
 - This enzyme normally converts stored fats into glucose.

Children who have eaten during the day are **not** affected by eating many lychee fruits.

Starving children may die from eating many lychee fruits but children who have eaten during the day are not affected.

Explain why.

(6) (Total 14 marks)

Q4.

Two 18-year-old male students measured their reaction times.

The students used two methods, Method 1 and Method 2.

Method 1

- 1. Sit in front of a tablet computer.
- 2. When the tablet makes a sound, touch the tablet screen as quickly as possible.
- 3. Record the reaction time shown on the tablet.
- 4. Repeat steps **1** to **3** another two times.

Method 2

- 1. Hold a metre rule so the bottom of the rule is level with the top of the other student's thumb.
- 2. Let go of the metre rule.
- 3. The other student catches the metre rule.
- 4. Record the position of the student's thumb on the metre rule.
- 5. Convert the position on the metre rule to a reaction time using a conversion table.
- 6. Repeat steps **1** to **5** another two times.

The table below shows the results.

	Reaction time in seconds								
Student	Method 1				Method 2				
	Test 1	Test 2	Test 3	Mean	Test 1	Test 2	Test 3	Mean	
Α	0.72	0.69	0.71	0.71	0.8	0.6	0.8	0.7	
В	0.53	0.49	0.52	0.51	0.6	0.7	0.5	0.6	

(a) Student **A** and student **B** had different reaction times.

Suggest **two** reasons why student **A**'s reaction time was longer than student **B**'s reaction time.

1			
2			

(2)

(b) Give **two** reasons why Method **1** would give more accurate results than Method **2**.

1			
2			

(2)

(c) In Method **1** the students react to a sound.

In Method 2 the students react when they see the metre rule drop.

A sound wave is a longitudinal wave.

Visible light is a transverse wave.

Describe the difference between a longitudinal wave and a transverse wave.

(d) The nervous system coordinates reflex actions.

A person accidentally touches a hot object.

The person moves their hand away quickly.

Describe how information about the hot object is detected, **and** how the information reaches the muscles in the arm.

(4) (Total 10 marks

Mark schemes

Q1.

(a) any **four** from:

•

- (stimulus is) detected by the receptor
- (initiates) an electrical impulse
- (impulse) travels via the neurones
- sensory, relay and motor

allow in this order only

- crosses synapses
- (crosses synapses) as a chemical

(b)	Level 2: The method would lead to the production of a valid	
. ,	outcome. All key steps are identified and logically sequenced.	
		3-4

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

1-2

0

1

1

1

4

No relevant content

Indicative content

- select at least 3 people
- do reaction time test at least 3 times using right hand
- details on how to do test in valid manner
- find a mean
- remove anomalous readings
- repeat for each person for left hand
- select people of same age
- select people of same gender
- same time of day
- other control such as amount of coffee, sleep.

To access level 2 the right hand and left hand of each person must be compared

(c)

$$\frac{(0.2 + 0.4 + 0.3 + 0.4 + 0.2 + 0.3)}{6}$$
or
$$\frac{1.8}{2}$$

6

0.3

(d) reaction time

allow time

(e)	students who play tennis (regularly) had shorter / faster (mean) reaction time(s)	1
(f)	 overlap in times between two groups allow correctly described as comparative data 	
	small difference in (mean) times	
	 small sample used allow students who did not play tennis may have played other (ball) games 	1 [13]
Q2.		
(a)	endocrine (system)	1
(b)	in the blood(stream) allow in plasma	1
(c)	allow correct sequence of steps starting with low oestrogen / progesterone	
	(when oestrogen / progesterone are released from the ovaries negative feedback to the pituitary)	
	inhibits / prevents / stops / reduces the production / release of FSH /	
	LH allow causes less FSH / LH to be produced / released	1
	(so) less stimulation of ovaries	1
	(so) less oestrogen / progesterone released	1
(d)	(when negative feedback stops) oestrogen / progesterone do not inhibit release of LH	
	allow (when negative feedback stops) oestrogen / progesterone stimulates release of LH	
	ignore references to FSH	1
	(so) there is an increase in LH	
	ignore references to FSH	

	LH causes the release of an egg		
	or		
	LH causes ovulation		
	do not accept FSH causes release of an egg		
		1	
(e)	body reacts as though progesterone levels are increased	1	
	(which has) negative feedback effect on the pituitary gland		
	allow decreased production (of		
	hormones) from pituitary gland	1	
		-	
	(so) decreased production / release of FSH		
	allow (so) decreased production / release of LH		
		1	
	(decreased FSH) prevents maturation of egg		
	allow (decreased LH) so no egg		
	released		
	mp3 and mp4 must correspond		
	if no other mark awarded allow		
	progesterone / progestin thickens mucus in cervix for 1 mark		
	and		
	thicker mucus makes it difficult for sperm to enter uterus for 1 mark		
	sperin to enter dierus for Timark	1	
			[12]
Q3.			
(a)	regulation / control / maintenance of internal conditions (of a cell / body)		
	allow keeping the internal conditions (of a cell /		
	body) the same	1	
	for optimum (cell / enzyme activity)		
	allow description of optimum functioning (of cell / body)		
	•	1	
(b)	glucagon		
~ /	correct spelling only		
		1	
()			

1

(c) any **two** from:

	 fasting blood glucose is higher than normal range reached a very high concentration after glucose drink did not return to normal after 3 hours or fell slowly after reaching peak. 		
	use of correct data in comparison to normal ranges given for any of the above points		
	allow ± half a small square for values quoted from the graph	1	
	ignore references to person A	2	
(d)	(person A has Type) 2 (pancreas) producing (lots of) insulin but body cells cannot respond to it.		
	allow cells becoming resistant to insulin for respond to insulin. do not accept the person has become resistant to insulin		
		1	
	(person B has Type) 1 (pancreas) not producing enough insulin (to control concentration of glucose in the blood)	1	
	type of diabetes must be correct	-	
(e)	starving children have used up their glycogen stores allow starving children have no / low glycogen stores		
	(a) would need (liver enzyme) to release glucese from fate	1	
	(so) would need (liver enzyme) to release glucose from fats	1	
	as enzyme is stopped from working they get low / no glucose allow no working enzyme leads to hypoglycaemia	1	
	(cell) respiration is insufficient (so they die) allow starving children use proteins to release energy (which leads to death)		
		1	
	children that are not starving have glycogen stores in liver / muscle	1	
	(so) glucagon will continue to release glucose (into the blood for them)		
		1	[14]

Q4.

- (a) any **two** from:
 - was more tired

	less practiceless caffeine	
	allow correct reference to named drug	
	had drunk alcohol	
	allow converse if clearly describing student B	
	ignore experimental method ignore fitter	2
(1-)		
(b)	the computer (timer) had a higher resolution	1
	the metre rule could slip through the hand causing inaccurate readings	
	allow it is harder to catch a ruler than	
	press a button	
	ignore reference to human error ignore reference to	
	accuracy / precision	
	allow converse	1
		1
(c)	in a longitudinal wave, the oscillations / vibrations are parallel to the direction of energy transfer	
	allow direction of travel for energy	
	transfer	1
	in a transverse ways, the assillations (vibrations are perpendicular to the	
	in a transverse wave, the oscillations / vibrations are perpendicular to the direction of energy transfer	
	allow direction of travel for energy transfer	
	if no other mark scored allow 1 mark for transverse waves have peaks and	
	troughs and longitudinal waves have	
	compressions and rarefactions	1
<i>(</i> 1)		-
(d)	(temperature) receptors (in the skin / hand detect the information)	1
	an (electrical) impulse travels along the sensory neurone	
	ignore message / signal / information	
		1
	(then) travels along the relay neurone and then the motor neurone	
		1
	chemical moves / diffuses across the synapse	
	ignore gap allow chemical moves / diffuses across	
	the synapse applied to between any two	
	neurons in the pathway	
	max 3 marks if not in correct order	1