Types of Erosion

Areas
+600 m : Peaks and ridges cold, snow common. i.e. Scotland

Areas 200m: Flat hills. hils weather. i.e. Fens

1) Swash moves up the beach at the angle of the prevailing wind.
2) Backwash moves down the beach at 90° to coastline, due to gravity.
3) Zigzag movement (Longshore Drift) transports material along beach
4) Deposition causes beach to extend, until reaching a river estuary.
5) Change in prevailing wind direction forms a hook.
6) Sheltered area behind spit encourages deposition, salt marsh forms

Unit 1c

Types of Transportation
Mass Movement

Types of Erosion		Types of Transportation	
The break down and transport of rocks smooth, round and sorted.		A natural process by which eroded material is carried/transported.	
Attrition	Rocks that bash together to become smooth/smaller.	Solution	Minerals dissolve in water and are carried along.
Solution	A chemical reaction that dissolves rocks.	Suspension	Sediment is carried along in the flow of the water.
Abrasion	Rocks hurled at the base of a cliff to break pieces apart or scraped against the banks and bed of a river.	Saltation	Pebbles that bounce along the sea/river bed.
Hydraulic Action	Water enters cracks in the cliff, or river bank, air compresses, causing the crack to expand.	Traction	Boulders that roll along a river/sea bed by the force of the flowing water.
Types of Weathering		sumpenaton	soution
Weathering is the breakdown of rocks where they are.			Saltation
Biologic	Breakdown of rock by plants and animals e.g. roots pushing rocks apart.	Wenter	Rat is Deposition?
Mechan	Breakdown of rock without changing its chemical composition e.g. freeze thaw	When the sea or river loses energy, it drops the sand, rock particles and pebbles it has been carrying. This is called deposition. Heaviest material is deposited first.	

AQA
Physical Landscapes in the UK
How do waves form?
Waves are created by wind blowing over the surface of the sea. As the wind blows over the sea, friction is created producing a swell in the water.
Why do waves break?
2 As waves approaches the shore, friction slows the base.
Stage One

Water seeps
into cracks and
fractures in the
rock.

Size of waves
Affected by:
Fetch how
far the wave
has travelled
Strength of
the wind.
How long the
wind has
been
blowing for.

A large movement of soil and rock debris that moves down slopes in response to the pull of gravity in a vertical direction.

Bay	1)
Soft rock	Waves attack the coastline. Softer rock is eroded by the sea quicker forming a bay, calm area cases deposition.
Heard rock	3)More resistant rock is left jutting out into the sea. This is a headland and is now more vulnerable to erosion.

Formation of Coastal Stack

1) Hydraulic action widens cracks in the cliff face over time.
2) Abrasion forms a wave cut notch between high tide and low tide.
3) Further abrasion widens the wave cut notch to from a cave.
4) Caves from both sides of the headland break through to form an arch.
5) Weather above/erosion below -arch collapses leaving stack.
6) Further weathering and erosion eaves a stump.

Coastal Defences

Hard Engineering Defences

Groynes	Wood barriers prevent longshore drift, so the beach can build up.	$\begin{aligned} & \sqrt{x} \\ & \times \end{aligned}$	Beach still accessible. No deposition further down coast = erodes faster.
Sea Walls	Concrete walls break up the energy of the wave. Has a lip to stop waves going over.	$\begin{aligned} & d \\ & d \\ & x \end{aligned}$	Long life span Protects from flooding Curved shape encourages erosion of beach deposits.
Gabions or Rip Rap	Cages of rocks/boulders absorb the waves energy, protecting the cliff behind.	$\begin{aligned} & 1 \\ & 1 \\ & \times \end{aligned}$	Cheap Local material can be used to look less strange. Will need replacing.
Soft Engineering Defences			
Beach Nourishment	Beaches built up with sand, so waves have to travel further before eroding cliffs.	$\begin{gathered} 1 \\ 1 \\ \times \\ \times \\ \times \end{gathered}$	Cheap Beach for tourists. Storms $=$ need replacing. Offshore dredging damages seabed.
Managed Retreat	Low value areas of the coast are left to flood \& erode.	1 1 \times	Reduce flood risk Creates wildlife habitats. Compensation for land.

Don't forget to look at the case study booklet North Wales Coastline

Middle Course of a River
Here the gradient get gentler, so the water has less energy and moves more slowly. The river will begin to erode laterally making the river wider.

Water Cycle Key Term
Lower Course of a River

Water Cycle Key Terms		
Precipitation	Moisture falling from clouds as rain, snow or hail.	
Interception	Vegetation prevents water reaching the ground.	
Surface Runoff	Water flowing over the surface of the land into rivers	
Infiltration	Water absorbed into the soil from the ground.	
Transpiration	Water lost through leaves of plants.	
Physical and Human Causes of Flooding.		
Physical: Prolo Long periods of become satura	eavy rainfall causes soil to ding runoff.	Physical: Geology Impermeable rocks causes surface runoff to increase river discharge.
Physical: Relie Steep-sided va to flow quickly greater dischar	annels water ers causing	Human: Land Use Tarmac and concrete are impermeable. This prevents infiltration \& causes surface runoff.
Upper Course of a River		
Near the source, the river flows over steep gradient from the hill/mountains This gives the river a lot of energy, so it will erode the riverbed vertically to form narrow valleys.		
Formation of a Waterfall		
	1) River flows over alternative types of rocks.	
	2) River erodes soft rock faster creating a step.	
	3) Further hydraulic action and abrasion form a plunge pool beneath.	
	4) Hard rock above is undercut leaving cap rock which collapses providing more material for erosion.	
	5) Waterfall retreats leaving steep sided gorge.	

Near the river's mouth, the river widens further and becomes flatter. Material transported is deposited.
Formation of Floodplains and levees
When a river floods, fine silt/alluvium is deposited
on the valley floor. Closer to the river's banks, the
heavier materials build up to form natural levees.

$\checkmark \quad$| Nutrient rich soil makes it ideal for farming. |
| :--- |
| Flat land for building houses. |

River Management Schemes

River Management Schemes	
Soft Engineering	Hard Engineering
Afforestation - plant trees to soak up rainwater, reduces flood risk.	Straightening Channel - increases velocity to remove flood water.
Demountable Flood Barriers put in place when warning raised.	Artificial Levees - heightens river so flood water is contained.
Managed Flooding - naturally let areas flood, protect settlements.	Deepening or widening river to increase capacity for a flood.

Hydrographs and River Discharge
River discharge is the volume of water that flows in a river. Hydrographs who discharge at a certain point in a river changes over time in relation to rainfall

1. Peak discharge is the discharge in a period of time.
2. Lag time is the delay between peak rainfall and peak discharge.
3. Rising limb is the increase in river discharge.
4. Falling limb is the decrease in river discharge to normal level

Case Study - Boscastle flood August 16 ${ }^{\text {th }} 2004$
Boscastle is a small village in Cornwall. It has a permanent population of under 1000.90% of jobs in the village are linked to tourism.

Step 2

Further hydraulic action and abrasion of outer banks, neck gets smaller.

Step 4
Evaporation and deposition cuts off main channel leaving an oxbow lake.

Causes of flood - 5 hours of heavy rain (3 inches in 1 hour), Impermeable rock, steep valley sides, thin soils limit vegetation. Buildings narrowing river channel. Narrow bridges trapped debris. Effects of flood - 100 homes and 25 businesses
damaged. 75 cars and 8 boats washed away. 150 people had to be rescued. Damage cost $£ 15$ million Responses to flood - Scheme cost $£ 4.6$ million. Beds of rivers lowered and channels widened. Bridges widened. Car park raised. Trees removed from near river.

