
2.1 ALGORITHMS

COMPUTATIONAL THINKING

PSEUDOCODE
START

IF the Decision = TRUE THEN:

Perform Action 1

ELSE

Perform Action 2

ENDIF

END

 Universal language, planning
phase before actual coding in
for e.g. python

 Work out where you need
inputs, outputs, decisions,
loops and variables.

•Focussing on just the important
details of a problemAbstraction

•Breaking a problem down into smaller
parts so that it is easier to solveDecomposition

•creating a step by step solution to a
problem

Algorithmic
thinking

FLOWCHART

SEARCHING ALGORITHMS

To find an item in a list, computers need to use a
searching algorithm. A linear search and binary search
are both examples of sorting algorithms.

Linear Search: Checks each item in the list one by one
until it finds what it is looking for
+ Simple, list doesn’t need to be ordered
- Not efficient, takes time with lots of data

Binary Search: Finds the middle item in an ordered
list by doing (n+1)/2. IF the middle item is what it
is searching for it stops. If not, it compares the
item you are searching for to the middle item so that
it knows whether to look in the first half or second
half of the list. Then it repeats these steps until
the item is found
+ More efficient than a linear search
- Only works on an ordered list, complex to program

SORTING ALGORITHMS

Sorting algorithms sort items into an ordered list.

Bubble Sort: Checks the first two items in a list, swaps them if
they are in the wrong order and then moves onto the next two
items and repeats the process. Once it has passed through the
list once it goes through again until none of the items need
swapping. + Simple. – Takes a long time

Merge Sort: Finds the middle item (n+1)/2 and splits the list in
half. Repeats this step until the list is split into individual
items (sub-lists). It them merges (joins) the sublists in pairs.
Each time the sublists are paired they are sorted into the
correct order. + Efficient – Slow

Insertion Sort: Looks at the second item in a list and compares
it to the items that are in front of it, then inserts it into
the right place. It then moves to the next item in the list and
repeats these steps. + Quick for sorting small lists – slow with
long lists

