The physical landscapes of the UK have distinctive characteristics.

Term	Definition
weathering	The breakdown of material in situ by physical, chemical and biological processes; if movement is involved this becomes erosion.
Ice Ages	A glacial episode characterised by lower than average global temperatures and during which ice covers most of the Earth's surface.
Holocene	The period of time from 12,000 years ago until today.
igneous	Rocks formed within the interior of the Earth from molten rock.
sedimentary	Rocks formed by layers of sediment, usually at the bottom of the sea.
metamorphic	Rocks that have been changed as a result of heat and pressure being applied to them for long periods of time.
geology	The study of rocks and their formation, structure and composition.

Distribution of areas of upland, lowland and glaciated landscapes

Climate

rocks.

weathering.

locations

Upland areas are mainly found in the NW; they have colder, wetter weather increasing physical weathering. They were covered by ice during the Ice Ages; ice is very powerful and has eroded the landscape to give dramatic mountain scenery.

Lowland areas are mainly found in central and S England; the rocks are made up of till (material) deposited by the glaciers during the Ice Ages.

Rain, frost and wind all weather

Highland areas often experience

freezing conditions so are

Windy, exposed locations are

weathered faster than sheltered

shaped by freeze-thaw

Grampian Mountains

- , highland area
- Igneous rocks
- Shaped by glaciation (ice) in the past

Snowdonia

_

- highland area
- Igneous rocks from volcanoes
- Shaped by glaciation (ice) in the past
- The Downs and the Weald
- lowland area
 - Clays and sands (sedimentary rocks)

Distinctive characteristics of landscapes

Geology

- The harder the rock, the higher the land it is eroded less.
- Sedimentary rocks like chalk and clay lie under lowland areas.
- Rocks are weathered to create soils.
- Rocks contain different minerals

 this affects the type of vegetation that can grow in the soil.
- If the rock is impermeable no water can pass through it so there are many streams and rivers or peat/mires (boggy soil) are formed.
- If the rock is permeable there is little surface water.

Human Activity

- People have cleared land for agriculture.
- Flat land has been used for arable (crop) farming.
- Grassy areas have been used for dairy farming.
- Upland areas have been used for sheep farming.
- People have chopped down areas of woodland – we have very little original deciduous woodland left but we have replanted some.
- People have planted coniferous (evergreen) forests for timber.
- As settlements have grown, land has been reshaped, concreted over, rivers controlled or diverted and roads and railways built.

There are a number of geomorphic processes which create distinctive landscapes.

	which creat	e distilletive landscapes.
Term	Definition	
geomorphic processes	Processes that result in a change in the shape of the Earth; from 'geo' meaning the earth and 'morph' meaning to change shape.	
geodiversity	The natural range of geological, geomorphical, soil and water features that compose and shape the landscape.	
Geomorphic Processes Mass Movement – rocks move downhill due to gravity.		
 Weathering – breakdown of material in situ. Mechanical weathering – the physical action of rain, frost and wind that create weaknesses in rocks. Includes freeze-thaw (water in a crack freezes, expands and makes the crack wider) and exfoliation (rocks expand during very hot temperatures and then contract when it cools down making the rock start to peel in layers). Chemical weathering – materials react chemically in different ways which weakens them. Includes oxidation (chemicals in the air reacting with the rock). Biological weathering – rocks and land can be broken down by plants and animals. Includes rabbits burrowing into river banks. 		Slumps happen when the rock (clay) is saturated with water and slides downhill.

Rivers create a range of landforms which change with distance from their source within a river basin.

Term	Definition
vertical erosion	Erosion downwards; this deepens the river valley and channel to create v-shaped valleys. It is dominant in the upper course of a river.
lateral erosion	Erosion sideways; this widens the river valley and channel as the river meanders (bends). If is dominant in the middle and lower course of a river.
cross profile	Shows you what the cross-section of the river channel looks like; it should be narrow and shallow at the source and very wide and deep by the time the river reaches the sea/lake.
long profile	Shows you how the gradient (steepness) changes along a river; it should be steep at the source and become almost flat by the time the river reaches the sea/lake.

Waterfalls and Gorges

- 1. Created when the river flows over an area of hard rock followed by soft rock.
- 2. The soft rock is eroded more quickly creating a step.
- 3. As the water goes over the step it eroded more and more of the softer rock.
- 4. A steep drop is created which is called a waterfall.
- 5. The hard rock is undercut by the erosion and collapses due to gravity.
- 6. The collapsed rock is swilled around and helps to erode the softer rock in the plunge pool.
- 7. Overtime more collapses occur and the waterfall retreats creating a gorge.

V-shaped Valleys and Interlocking Spurs

The river erodes vertically downwards near its source creating Vshaped valleys. The rivers are not powerful enough to erode laterally as they have to wind around the hillsides creating interlocking spurs.

Meanders and Ox-bow lakes

- 1. The current if faster on the outside of the bend because the channel is deeper. Therefore more erosion takes place on the river bend forming a river cliff.
- The current is slower on the inside of the bend because the channel is shallower. So eroded material is deposited on the inside forming a slip-off slope.
- 3. Eventually erosion causes the outside bends to become closer and the river breaks through. Deposition cuts off the meander forming an ox-bow lake.

Floodplains

When a river floods onto the flood plain the water slows down and deposits the eroded material. This builds it up.

(c) After many floods

Meanders migrate across the flood plain making it wider. The deposition that happens on the slip off slopes of meanders also helps to build up the flood plain

River landscapes are dynamic and differ depending on their geology, climate and human activity.

6 0

20

19

4 5 6 7 8 9 10 11 12 13 Distance from the source (kilometres)

in a glacial trough)

Geomorphic Processes: The Afon Ogwen basin has largely been shaped by glacial erosion

Upper course- igneous rock	Middle Course - sedimentary	Lower Course- sedimentary
Igneous rock makes this part of the river basin very	Glacial erosion	Flooding in the lower course, north
resistant to erosion. However, glaciers during the last	through plucking of	of Bethesda, has caused deposition
ice age have carved out corries such as Ffynnon Loer	the side walls and	and created floodplains.
through plucking and abrasion.	abrasion of the	Deposition has also helped create
More recently, a combination of river erosion and	valley floor has	the Bangor Flats, as the river slows
mass movement has created v-shaped valleys.	created the Nant	when it meets the sea, it deposits
Rates of weathering can be high here due to the high	Ffrancon which is a	fine alluvium, making it a perfect
rainfall and low temperatures in winter.	glacial trough.	habitat for birds.

14

15

17

18

16

How Human Activity Impacts the Landscape:

2

3

0

1

Positives	Negatives
1990s- The Environment Agency helped to restore the	1960s- Part of the river flowing through the Nant
river to recreate the meanders, pools and riffles to	Ffrancon was dredged and straightened to help drain
allow the river to re-gain its original form and diversity	farmland. However, this increased river velocity and
of wildlife. Salmon numbers have since seen a rise.	removed the gravel from the river bed, meaning salmon
Snowdonia is a National Park – this limits the negative	numbers dropped significantly.
impacts of humans upon the landscape as new	Footpath erosion- tourists visit to view the beautiful
buildings and developments are strictly regulated and	river basin but damage the landscape as a result.
land use is monitored carefully.	

There are a range of landforms within the coastal landscape.

Term	Definition
longshore (littoral) drift	The movement of sediments along a stretch of coastline as a result of wave action.
waves	Elliptical or circular movement of the the sea surface that are translated into a movement of water up the beach as they approach the coastline.

<u>Cliff Retreat and Wave-cut Notches/Platforms</u>

The erosion of cliffs can create wave-cut platforms – areas of flat rock at the base of the cliff.

Caves, arches, stacks and stumps

a) Fault in the gradually gets bigger due to weathering.b) Erosion by waves widens the weakness in the cliff to form a cave.

- c) Waves cut through the headland to form an arch.
- d) Collapse of arch due to gravity to form a stack.

e) The stack is undercut all the way round as wave cut notches form. It eventually collapses to leave a stump which is covered at high tide.

Headlands and Bays

The Formation of Headlands and Bays

<u>Beaches</u>

Beaches are areas of land that lie between the storm-tide level and the low-tide level. They can be made up of sand, pebbles or a mixture of both.

Longshore drift carries material along the coast/beach:

- Waves approach the coast at the angle of the prevailing (most common) wind direction.
- 2) Swash pushes sand and gravel up the beach at the same angle.
- **3) Backwash** carries sand and gravel back down the beach at 90° under the force of gravity.
- 4) Sand and gravel move along the beach in a zigzag fashion.

<u>Spits</u>

Spits care creates when the coastline ends but the process of longshore drift continues. If the conditions are right the sediment is deposited and is built up to create new land.

The Formation of a Spit

If longshore drift continues along the spit, it may join up with the coastline on the other side to form a **bar** if there is no river to keep washing away the sediment.

Landscapes of the UK 6 Coastal landscapes are dynamic and differ depending on their geology, climate and human activity.

Key term	Definition
Sea walls	Walls made of concrete to reflect wave energy and prevent erosion.
Groynes	Wooden fences at right angles to the coast which traps material carried by LSD. This builds a beach to absorb wave energy. (Some can be made from rock armour).
Rock armour	Large boulders placed in front of cliffs to dissipate wave energy and protect the cliffs from erosion.

North Wales Coast

Geomorphic Processes: The North Wales coast has been shaped by erosion, longshore drift and deposition

Landform	Location and geology	Geomorphic processes and influence of climate
Headland	Great Orme- headland	Waves erode the coastline via processes such as hydraulic action and
and bay	made out of hard	abrasion. The area of Great Orme has taken longer to erode due to the
	limestone which is	rock type and so it is left jutting out into the Irish sea. In contrast Colwyn
	resistant to erosion	bay has been formed as the sandstone is less resistant to erosion and
	Colwyn Bay - bay made	therefore the land has eroded at a faster rate creating the bay. In the
	out of soft sandstone	future Great Orme may erode further resulting in the formation of
	and siltstone	stacks.
Spit and	Talacre- made up of	Prevailing winds along the coast from Prestatyn to Talacre cause waves
sand dunes	sands which have been	to hit the beach at an angle. This means sediment is transported
	deposited, making it	eastwards along the coast via longshore drift. When this reaches the Dee
	vulnerable to erosion.	Estuary the sediment is deposited as the waves lose energy; this has built
		up over time to form the spit and sand dunes at Talacre.
Beach	Colwyn Bay	This area is sheltered by Little Orme to the north west, meaning waves
		have less energy. Constructive waves have a stronger swash and a weak
		backwash, therefore sand is deposited building a beach up over time.

How Human Activity Impacts the Landscape:

Positive	Negative
Coastal Management- Sea wall, groynes and beach	Coastal Management- groynes used in towns such as
nourishment in place at Colwyn Bay mean that coastal	Prestatyn stop longshore drift and can starve
properties and businesses are protected. Talacre has	depositional features further down shore. This has
been protected through the use of beach nourishment	meant that the spit at Talacre is being eroded and
to provide more sediment for the spit. People have also	sediment is not being replaced. This can then put the
been encouraged to donate their old Christmas trees to	habitats of key species such as the natterjack toad at
help sediment deposition on the dunes.	risk.
SSSI- site of special scientific interest at Talacre. This	Management strategies such as sea walls can degrade
helps to protect rare species such as the natterjack	over time and have a negative impact on environmental
toads, sea holly and miner bees. It also ensures that	quality. E.g. sea walls in places are over 100 years old.
there is no new developments which will destroy the	
landscape.	