
## **The Nervous System**

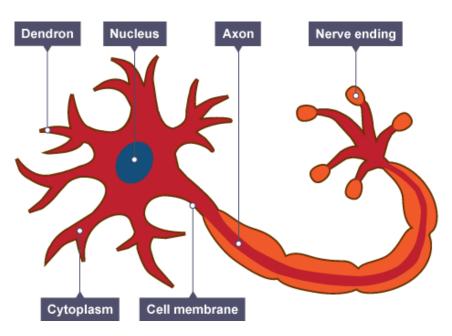
The nervous system enables humans to react to their surroundings and to coordinate their behaviour.

The human nervous system consists of:

- the central nervous system (CNS)— the brain and spinal cord
- the peripheral nervous system (PNS)— nerve cells that carry information to or from the CNS.



### **Neurones**


Nerve cells are called **neurones**. They are adapted to **carry electrical impulses** from one place to another.

A bundle of neurones is called a **nerve**.

There are three main types of neurone: **sensory**, **motor and relay**.

They have some features in common:

- A **long fibre (axon)** which is insulated by a **fatty (myelin) sheath**. They are **long** so they can carry messages up and down the body.
- Tiny **branches (dendrons)** which branch further as **dendrites** at each end. These receive incoming impulses from other neurones.

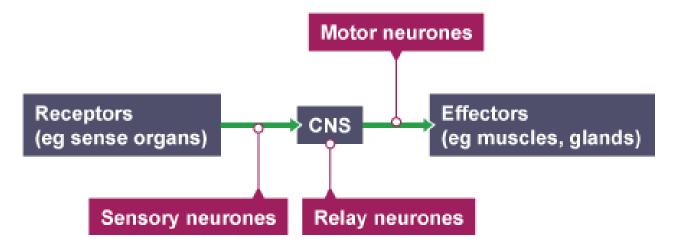


### **Receptors**

Receptors are groups of **specialised cells**. They detect a change in the environment (stimulus) and stimulate electrical impulses in response. **Sense organs** contain groups of receptors that respond to specific stimuli.

| Sense organ | Stimulus                                   |
|-------------|--------------------------------------------|
| Skin        | Touch, temperature and pain                |
| Tongue      | Chemicals (in food and drink, for example) |
| Nose        | Chemicals (in the air, for example)        |
| Eye         | Light                                      |
| Ear         | Sound and position of head                 |

#### **The Coordination Centre**


The coordination centre, such as the **brain, spinal cord or pancreas**, receives and processes information from receptors around the body.

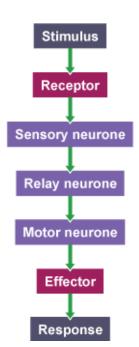
#### **Effectors**

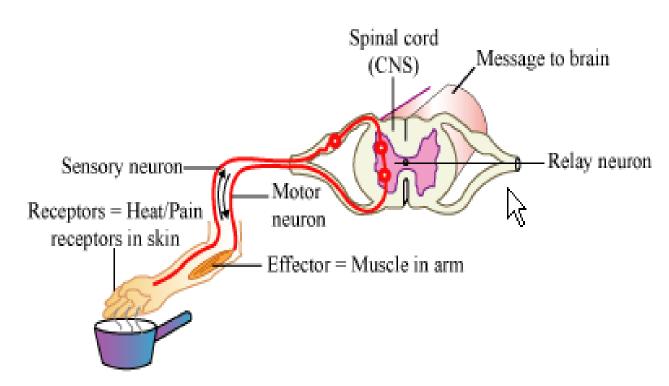
Effectors bring about responses, which restore optimum levels, such as core body temperature and blood glucose levels. Effectors include **muscles and glands**, and so responses can include **muscle contractions** or **hormone release**.

## **Receptors to effectors**

The diagram summarises how information flows from receptors to effectors in the nervous system:




### **Reflex Actions**


A reflex action is an **automatic** (involuntary) and **rapid response** to a stimulus, which minimises any damage to the body from potentially harmful conditions, such as touching something hot. Reflex actions are therefore **essential to the survival of many organisms**.

A reflex action follows this general sequence and <u>does not involve the conscious part of the brain</u>. This is why the response is so fast.

#### Reflex arcs

The nerve pathway followed by a reflex action is called **a reflex arc**. For example, a simple reflex arc happens if we accidentally touch something hot.





- 1. **Receptor** in the skin detects a stimulus (the change in temperature).
- Sensory neuron sends electrical impulses to a relay neuron, which is located in the spinal cord of the CNS. Relay neurons connect sensory neurons to motor neurons.
- 3. Motor neuron sends electrical impulses to an **effector**.
- Effector produces a response (muscle contracts to move hand away).


## Investigating reflex actions

You can carry out a number of investigations to determine the effect of a specific factor on human reaction times.

A suitable investigation could be the effect of caffeine or the amount of background noise in the room. A simple method to measure the effect is to use the ruler drop test.

### Ruler drop test

- Work with a partner.
- Person A holds out their hand with a gap between their thumb and first finger.
- Person B holds the ruler with the zero at the top of person A's thumb
- Person B drops the ruler without telling Person A and they
  must catch it.
- The number level with the top of person A's thumb is recorded in a suitable table. Repeat this ten times.
- Swap places, and record another ten attempts.
- You can use the conversion table to help convert your ruler measurements into reaction time or just record the catch distance in cm.



| Catch distance (cm) | Reaction time (ms) |
|---------------------|--------------------|
| 1                   | 50                 |
| 5                   | 90                 |
| 10                  | 140                |
| 15                  | 170                |
| 20                  | 200                |
| 25                  | 230                |
| 30                  | 250                |

Important: 1 millisecond (ms) is one thousandth of a second. (1/1000 s)