Living things have certain life processes in common. There are seven things that all living things do. The phrase **MRS GREN** is a way to remember them:

Μ	Movement	All living things move, even plants	
R	Respiration	Getting energy from food	
S	Sensitivity	Detecting changes in the surroundings	
G	Growth	All living things grow	
R	Reproduction	Making more living things of the same type	
Е	Excretion	Getting rid of waste	
Ν	Nutrition	Taking in and using food	

Living things are called **organisms**. Organisms are made of tiny subunits called **cells** (boxes). A **cell is the basic building block of all living things**.

Eukaryotic cells (eu= true, Karyon= nucleus), so these **have a nucleus** (DNA surrounded by a membrane). Plants, animals and fungi are in this group.

All the components of a cell are called **organelles** (like small organs).

Cell membranelets substances in and out of cell Cytoplasmwhere chemical reactions take place **Ribosome-**Nucleusmakes Controls proteins the cellhas **DNA** Mitochondria - Releases energy in respiration

Cells – Tissue – Organ – Organ system

Simple organisms may be **unicellular**(consist of one cell) Complex organisms are **multicellular**(consist of many cells)

Animal cells have:

Cell membrane- outer flexible surrounding, **controls entry and exit of substances** into the cell.

Cytoplasm- Jellylike fluid where chemical reactions take place

Nucleus- Controls the activities of the cell, contains genetic material (DNA)- Do not say its the brain of the cell

Mitochrondria- Oval organelles surrounded by 2 membranes, **site of respiration**- release (don't produce) energy from glucose.

Ribosomes- very tiny organelles which

Tissues

Animal cells and plant cells can form tissues, like muscle tissue. A living tissue is made from a group of cells with a similar structure and function, which all work together to do a particular job. Here are some examples of tissues: Muscle, the lining of the intestine, the lining of the lungs

Organs

An organ is made from a group of different tissues, which all work together to do a particular job. Here are some examples of organs: Heart, lung, stomach, brain

Organ systems

An organ system is made from a group of different organs, which all work together to do a particular job. Here are some examples of organ systems: circulatory system, respiratory system, digestive sys-

3. Light/Compound Microscopes

Magnification can be worked out from a photograph or drawing using the equation below:

Image =Actual size X Magnification

The same unit of measurement should be used when making the calculation - metre (m),

millimetre (mm) or *micrometre (\mu m).* To convert millimetres into micrometres, multiply by **1000**.

The above equation can be rearranged in order to calculate the actual length of the cell and the magnification used as well as the length of the image.

Cells are very small (usually between 1 and 100 μ m) and can only be seen by magnification with a microscope.

Magnification is how large the image is compared to real life .

Resolution is used to describe the ability of **microscope** to distinguish detail. In other words, this is the minimum distance at which two distinct

Light vs. Electron microscopes

Feature	Light microscope	Electron microscope
Radiation used	Light rays	Electron beams
Magnification	x 2000	x 500 000
Resolving power	200 nm	0.2nm
Focused by	Glass lenses	Electromagnets
Biological material	Living or dead	Dead
Size	Small & portable	Very large & static
Preparation of material	Quick & simple	Time-consuming & complex
Cost	Relatively cheap	VERY expensive