Code	Objective					
	Interpret and compare numbers in standard form A x 10^n 1 \leq A $<$ 10, where n is a positive or negative integer or zero.					
	Put the following numbers into ascending order					
	7. 2×10^3 6.3 $\times 10^4$ 7.4 $\times 10^{-4}$ 6.7 $\times 10^0$					
I3.1	Step 1 – Convert the numbers from standard form back to ordinary numbers 7200 63000 0.00074 6.7					
	Step 2 – Order the numbers from largest to smallest					
	0.00074 6.7 7200 63000					
	Step 3 – Write the numbers out in the correct order in standard form. $Answer: 7.4 \times 10^{-4} 6.7 \times 10^{0} 7. \ 2 \times 10^{3} 6.3 \times 10^{4}$					
	Estimate powers and roots of any given positive number.					
	Estimate $\sqrt{45}$ Step 1 – Write down the two nearest square numbers to the number given in the question					
	$\sqrt{36} = 6$ $\sqrt{49} = 7$ Step 2 – Draw a number line between the two numbers					
	$\sqrt{36}$ $\sqrt{49}$					
13.2	Step 3 – Estimate where the number in the question should be placed on the number line					
	$\sqrt{36}$ $\sqrt{45}$ $\sqrt{49}$					
	6 7 Step 4 – Then estimate a value (to 1 d.p) for the square root of the number based upon it's position on the					
	number line. $Answer \sqrt{45} \approx 6.7$					
	Simplify surd expressions involving squares					
	Simplify $\sqrt{24}$					
	Step 1 Write down all the factor pairs of the number given					
	$\sqrt{1 \times 24} \sqrt{2 \times 12} \sqrt{3 \times 8} \sqrt{4 \times 6}$ Step 2 Select the polytical contains the largest equate number					
	Step 2 Select the pairing which contains the largest square number $\sqrt{4\times 6}$					
13.3	Step 3 Separate the two number into individual square roots and square root the square number					
	$\sqrt{4} \times \sqrt{6}$					
	$2 \times \sqrt{6}$					
	Step 4 – Simplify the expression					
	Answer: $2\sqrt{6}$					
	Simplify and manipulate algebraic expressions to maintain equivalence by taking out common factors, expanding products of two or more binomials and collecting like terms.					
13.4	Expand $(x+2)(x+3)$					
	Step 1: Multiply the 2 nd bracket by each term in the 1 st bracket.					

	x(x+3) + 2(x+3)						
	Step 2 Collect the like terms $x^2 + 3x + 2x + 6$						
	$Answer x^2 + 5x + 6$						
	Simplify expressions involving the laws of indices						
	Simplify the following expressions						
Add the powers together y³ x y⁵							
	yxyxy x yyxyyxyxy						
	y ³⁺⁵						
	y ⁸						
	Subtract the powers $\frac{y^9}{y^4}$						
I3.5	<u>y ×y×y×y×d×d×d×d</u> d×d×d×d						
	y^{9-4}						
	y^5						
	Multiple the powers together $(y^2)^3$						
	$y^2 \times y^2 \times y^2$						
	$y^{2\times 3}$						
	y ⁶						
	Reduce a given linear equation in two variables to the form y = mx + c: calculate and interpret						
	gradients and intercepts of graphs of such linear equations numerically, graphically and algebraically.						
	y = mx + c $m = gradient$ $c = y intercept$						
	Find the equation of the line given below:						
	3 2 2						
	4 3 3 4 1 1 3 3 4						
13.6							
	Step 1 Select two coordinates from the graph and form a right-angled triangle.						
	3 4						
	Step 2 To calculate the gradient of the graph use the formula below.						
	$m = \frac{\text{change in } y}{\text{change in } x}$						
	$m = \frac{4}{2}$ $m = 2$						
	m = 2						

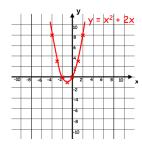
Answer :
$$y = 2x - 1$$

Plot graphs of quadratic functions

Plot the graph $y = x^2 + 2x$ for the values $-3 \ge x \ge 2$

Step 1 – Draw a table of values

13.7

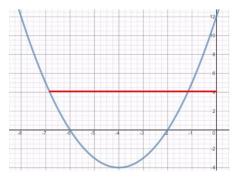

13.8

х	-3	-2	-1	0	1	2
У						

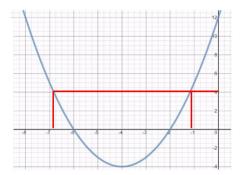
Step 2 – Substitute the values of x into the equation and calculate the y values.

х	-3	-2	-1	0	1	2
У	3	0	-1	0	3	8

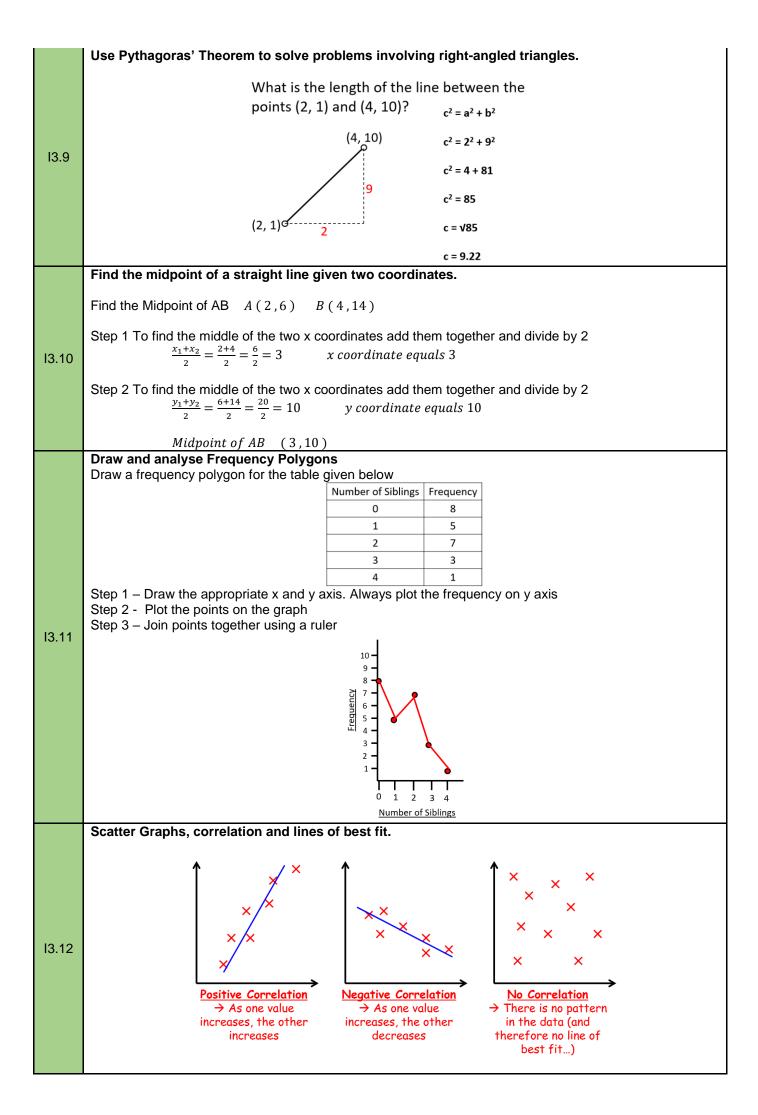
Step 3 – Plot the x and y values as coordinates on a set of axis



Use quadratic graphs to estimate values of y for given values of x and vice versa.


Below is the graph $y = x^2 + 8x + 1$

Using the graph solve the equation $4 = x^2 + 8x + 12$


Step 1 Go to 4 on the y axis and draw a line across to meet the graph at both points

Step 2 Draw a line down to the x axis at the two points were your line intersects the graph. Then read of the values of x.

Answer: -1.1 and -6.9

