
flowcharts

Algorithm - An algorithm is a sequence of steps
that can be followed to complete a task. Be
aware that a computer program is an
implementation of an algorithm and that an
algorithm is not a computer program.

Decomposition - Decomposition means
breaking a problem into a number of sub-
problems, so that each sub- problem
accomplishes an identifiable task, which might
itself be further subdivided.

Abstraction - The process of removing unnecessary detail from a
problem. E.g. The London tube map is a form of abstraction.
The map tells you what line each station is on and which other
lines are connected. Very useful for a person travelling. Not useful
to an engineer who is planning where to dig tunnels for a new line.

Keywords and Concepts

Remember, more than one algorithm can be used to solve a problem!

Start

Input
password

Does
password =

“computing”
?

No

Output
“Access
denied!”

Yes

Output
“Access

Permitted”

LoggedIn = True

End

Where can you see
selection in the

flowchart?

Where can you see
iteration taking

place?

Sequence
In a sequence structure,
an action or event leads
to the next in a
predetermined order.

qty = input()
total = qty * price
print(total)

Selection
A question is asked,
depending on the answer
the program takes one, two
or more courses of action.
x = input()
if x > 5 then

print(“too big”)
else

print(“just right!”)
endif

Iteration
A process wherein a set of
instructions or structures are
repeated in a sequence a set
number of times or until a
condition is met.

for count = 1 to 10
print(“ROVERS!”)

next count

3
 P

ro
g

ra
m

m
in

g
 C

o
n

st
ru

ct
s

Example flowchart

0

Programming Theory

Variable – Sometimes we need computers to
remember the information we give it. A variable
can be thought of as a box (memory location)
that the computer can use to store a value. The
value held in the box may change or vary. A
program can use as many variables as it needs.

A variable is made up of three parts:
• A name (identifier)
• A type (data type – see below)
• A value (what you are storing)
name = “Mr rifai”
The variable is called name, its data type is a
string, and its value is Mr Rifai

Remember if it’s in speech marks, it’s a STRING!

Data types

String Combination of characters
that appear on the keyboard
(alphanumeric)

Integer A whole number

Real A decimal/fractional number

Boolean True/False or Yes/No

Character/Char Used for single letters

Assignment - In order to change the data
value stored in a variable, you use an operation
called assignment. Different values may
be assigned to a variable at different times
during the execution of a program.

x = 5 #here we are assigning 5 to the variable x
name = input() #here whatever the user types

in will be assigned to the
variable name.

Example:

Scope – The scope of a variable can be local or global.

• local variables only work in the procedure or
loop they are created in.

• global variables can be accessed from any
point in a program.

Declaration – Declaring a name for a variable is
saying what the data type will be and where it
will be stored in memory.
E.g. Dim name as String

Constant – Similar to a variable, it is still a named memory location in the program BUT the value
cannot be changed while the program is running E.g. If we wanted to store the VAT for a shop program
we would set it as a constant at the start: VAT = 0.2 or in VB Const VAT As Real = 0.2

At some point, a program will have to ask a question
because it has reached a step where one or more
options are available. Depending on the answer
given, the program will follow a certain step and
ignore the others. E.g. If you have a queue jumping
ticket go to the front else queue up!

These decisions lead to different paths through the
program. Without selection it would not be possible
to include different paths in programs. Think of the
decisions involved in any game you have played….

Selection is implemented using IF statements.

Variables and constants

selection

What decision is being
made here?

1

Iteration

Selection continued…

For selection in programming you can use if …else
age = int(input("How old are you?"))
if age >= 70:

print("You are aged to perfection!")
else:

print("You are a spring chicken!")
End if

You can use else if to provide more choices.
age = int(input("How old are you?"))
if age >= 70 then:

print("You are aged to perfection!")
elseif age == 50 then:

print("Wow, you are half a century old!")
else:

print("You are a spring chicken!")

The third programming construct is iteration.
Means repetition, so iterative statements always
involve performing a loop in the program to
repeat a number of statements.

There are 2 types of iteration:
1. Indefinite – iteration continues until some

specified condition is met.
e.g. WHILE…END WHILE and REPEAT…UNTIL

2. Definite – Iteration is carried out a set
number of times and is decided in advance.
e.g. FOR….NEXT loops in programming.Indefinite = Condition-controlled loop

Definite = Counter-controlled loop

WHILE …END WHILE loop
The condition is tested before
each iteration.
And the statements in the loop
will be executed if the condition
is true.
The statements in the loop may
not be executed (if the condition
is initially false)

num = input()
WHILE num > 0

total = total + num
num = input()

END WHILE
print total

WHILE Loops are used when the
number of repetitions is NOT
known in advance
WHILE Loops are known as
condition-controlled, as the loop
ends when a condition is met.

REPEAT …UNTIL loop
Similar to the WHILE loop.
Difference being that the
Boolean expression is tested at
the end of the loop!
This means the loop is always
performed at least once!

num = input()
REPEAT

total = total + num
num = input()

UNTIL num = 0
print total

In the above code, when num =
0, the loop will stop.
The condition is tested AT THE
END of the loop – hence the
instructions within the loop GET
EXECUTED AT LEAST ONCE
Also condition-controlled and
used when repetitions NOT
known in advance.

FOR …NEXT loop
Useful when you know in
advance the number of
iterations you wish to
perform.
Uses a counter variable.

FOR i = 1 to 5
print (”ROVERS”)

NEXT

The above code will iterate
5 times and print ROVERS
five times. The counter
variable i starts at 1 and
ends at 5 and jumps out of
the loop.
Counter-controlled as the
Counter variable is used to
stop the Loop.
Used when the number of
repetitions are known in
advance.
(Finite number of Loops)

The code for each of the programs above outputs the same thing, 1,2,3,4,5.

x = 1
WHILE x < 6

print x
x = x + 1

END WHILE

x = 1
REPEAT

print x
x = x + 1

UNTIL x > 5

FOR x = 1 TO 5
print x

NEXT

2
Programming Theory 2

subroutines

Nested selection/iteration

Nested selection is IF statements within IF
statements. Indentation is important!
x = input(“Enter your age: “)
if x > 21 then:

if x > 100 then:
print(“You are too old, go away!”)

else:
print(“Welcome, you are of the right age!”)

end if
else:

print(“You are too young, go away!”)
end if

Nested iteration is a loop programmed within a
loop. See the example below of a times table
program.

for times_table = 1 to 12:
for count = 1 to 12:

product = times_table * count
print times_table, “x”, count, “=”, product

next
next

Nesting is made clear by indenting the code. Indenting makes the start and end of
the if OR loop more clearer! Use TAB to indent!

A subroutine is a named block of code which performs a specific task in a program. It can be called using its name
(identifier) in the main program. The two types of subroutine you need to know are procedures and functions.

Procedures don’t need to return values back to
the main program.
PROC displaymenu()

print(“Option 1: Display rules”)
print(“Option 2: Start new game”)
print(“Option 3: Quit”)
print(“Enter 1, 2, or 3: “)

END PROC

#main program
displaymenu()

When executed, main program runs first (Sub Main) in VB

A function MUST return a value back
to the main program.
FUNCTION getchoice()

print(“Option 1: Display rules”)
print(“Option 2: Start new game”)
print(“Option 3: Quit”)
print(“Enter 1, 2, or 3: “)
choice = input()
return choice

END FUNCTION
#main program
option = getchoice()
print(“You have chosen “, option)

Parameters – Frequently, you need to pass values or variables to a subroutine from the main program.

Remember, Functions differ from procedures in that functions return values, unlike procedures
which do not. However parameters can be passed to both procedures and functions.

Th
is p

ro
gram

 ru
n

s th
e g

etch
o

ice()
fu

n
ctio

n
 an

d
 sto

res th
e retu

rn
valu

e
in

 th
e variab

le o
p

tio
n

in
 th

e m
ain

p

ro
gram

.

• Main program runs first (line 7)
• User enters value for radius and

length of cylinder (Lines 8 & 10)
• The values of the parameters

radius and length are passed to
the subroutine where they are
referred to using the identifiers r
and len (Line 1)

• Order of passing parameters is
important e.g. radius gets passed
to r & length gets passed to len.

• Names do not need to be the
same e.g. length != len

3
Programming Theory 3

Data structures

String handling

A data structure is simply a way of
representing the data held in a
computer’s memory. There are many
data structures available to
programmers e.g. arrays, records, lists
and more.

An array is one method of storing data in an organised
structure. If we were making a game and we wanted to
store player names and their scores we can store these
inside two arrays.

First we must declare the arrays so the program knows
what size array to create. The index starts at 0:

playerNames[4] #declares an array with 5 spaces
gameScores[4]

You can then tell the program exactly what names and
scores by writing the following:

gameScores = (124, 99, 121, 105, 132)
playerNames = ("Katie","Patrick","Tom","Rosie","Michael")

Arrays do not store mixed data types. The first array
gameScores[] can only store integers. The array
playerNames[] can only hold strings.

Remember an array holds multiple values, whereas an ordinary variable holds a single value!

Two-dimensional array – a one-
dimensional array can be seen as data
elements organised in a row. A two-
dimensional array is similar to a one-
dimensional array, but it can be
visualised as a grid (or table) with
rows and columns.

To declare a 10x10 grid (10 rows and
10 columns) we could say:

gameGrid[9][9]

Each element in the array can be
accessed using its index value. Think
of them as co-ordinates. An index is
used to point at a data element in an
array. gameGrid[0][0] would be
pointing to row number 1 and column
number 1.

gameScores[] mentioned previously has five elements:
gameScores = (124, 99, 121, 105, 132)
gameScores[0] would return element 124
gameScores[0] = 95 would change what's being held at
position 0 to 95.

The ability to manipulate alphanumeric data there are multiple functions we use in order to do this.

Function Meaning

All example code will be using the string “lovelace”.
Index numbers will vary depending on language!

SUBSTRING(start, end, string) Extract a portion of a string from another.
SUBSTRING(0,3,”lovelace”) would return
“love”

POSITION(string, char) Returns index position of a character in a
string. POSITION(”lovelace”,”v”) would
return 3

LENGTH(string) Return the length of the string
LENGTH(“lovelace”) would return 8.

ASCII(character) Return the ASCII value of the character.
ASCII(“A”) would return 65.

CHAR(ASCII Value) Return the Character corresponding to the
Numeric ASCII Value.
CHAR(65) would return “A”

String concatenation –
concatenate means chain
strings together to create new
ones.
E.g. print(“love” + “lace”)
would print “lovelace”. Here
we used the + to concatenate
the two strings.

Type conversion – Integers
can be converted to strings
and vice versa e.g.
int(“1”) would convert the
character “1” to the integer 1.

str(123) converts the integer
123 into a string “123”

4
Programming Theory 4

Pseudocode

Variables – Variables are assigned using the = operator.
x = 3
name = “Bob”

A variable is declared the first time a value is assigned.
Variables declared inside a function or procedure are
local to that subroutine. Variables in the main program
can be made global by the keyword global. A global
variable is accessible to any subroutine.

Casting – Variables can be typecast using
the int, str and float functions.

str(3) returns “3”
int(“3”) returns 3
Float(“3.14”) returns 3.14

Outputting to Screen
print(“hello”) or output(“hello”)

Iteration – Counter controlled – Definite
for i = 0 to 7

print(“Hello”)
next i

Will print hello 8 times (0-7 inclusive)

Iteration – Condition controlled – Indefinite
while answer != “computer”

answer = input(“What is the password?”)
end while

do
answer = input(”What is the password?”)

until answer == “computer”

Remember MOD gives you the remainder and DIV gives you the integer rounded down!

Selection e.g. IF statements or Select Case
if choice = “a” then

print(“you selected a”)
elseif choice = “b” then

print(”you selected b”)
else

print(“that wasn’t a choice!”)

Select Case
Case “a”

print(“you selected a”)
Case “b”

print(“you selected b”)
Case else

print(“that wasn’t a choice!”)

String Handling
To get the length of a string.
stringname.length or len(stringname)
To get a substring (string within a string):
Stringname.substring(startposition, numberof
characters)

E.g.
sometext = “Computer Science”
print(sometext.length)
Print(sometext.substring(3,3))

Will display:
16
put

5

Pseudocode continued…

Subroutines
Example 1
function triple(number)

return number*3
end function

sub main #main program
y = triple(7) #calling the triple function

passing 7 into the number
parameter.

Example 2
procedure greeting(name)

print(“hello” + name)
end procedure

sub main #main program
greeting(”Mr Rifai”)

Remember, functions must always return a value! Procedures don’t need to return anything.

Arrays
Arrays will be 0 based (index starts at 0)

array names[4]. #declares array with 5 spaces
names[0]=“Janine”
names[1]=“Emily”
names[2]=“Alison”
names[3]=“Ahmed”
names[4]=“Elijah”

print (names[3])
Would print “Ahmed”

Example of 2D Array
array board[7,7] #declares array with 8 rows
and 8 columns
board[0,0]=“Pawn”

Reading to a file
To open a file to read openRead is used and
readLine to return a line of text from the file.
The following program makes x the first line of
sample.txt

myFile = openRead(”sample.txt”)
x = myFile.readLine()
myFile.close()

Writing from a file
To open a file to write to, openWrite is used and
writeLine to add a line of text to the file. In the
program below hello world is made the contents
of sample.txt (any previous contents is
overwritten).

myFile = openWrite(“sample.txt”)
myFile.writeline(“Hello World”)
myFile.close()

Comments
Used so a programmer can annotate code so others can easily understand. Makes maintenance easier
and to are used help find bugs. Denoted by a # or //
while x < 5: //we will enter the while loop if the condition is true. The condition is if x > 5

print(“Hello)

Logical Operators in programming e.g. while x <=5 AND flag = false

6

Language and Translators

1st Generation (1GL) 2nd Generation (2GL) 3rd Generation (3GL)

Machine code Assembly language High level code

LOW-LEVEL LANGUAGE (LLL) LOW-LEVEL LANGUAGE (LLL) HIGH-LEVEL LANGUAGE (HLL)

At the very lowest level of
operation a computer follows
binary instructions. Uses 1s
and 0s. Processors (CPUs) use
machine code and each
processor has its own
machine code instruction set.

In machine code the
instructions are made up of
two parts e.g. 01101011

✓ Closer to architecture (CPU)

✓No need to translate
✘ Difficult for humans to

understand
✘ Opcodes have to be

memorised

0110 1011

Opcode Operand

Assembly code is created by
the developers of processors.
Assembly languages are
architecture dependent.
Uses mnemonics such as
ADD or MOV to shorten
instructions.

Often used to develop
software for embedded
systems and for controlling
specific hardware
components.

✓Memory efficient
✓ Greater control of

hardware features
✘ Needs to be translated by.

an assembler so a CPU can
understand.

✘ Not fully portable due to
architecture dependence

Most computer programs are
written in a high-level language
e.g. Python, Visual Basic & Java.
This is code that humans use to
program. Uses statements in
English and mathematical
symbols. E.g. if, function, MOD.

3 types of HLL:
1. Structure language
2. Procedural language
3. Object oriented language

✓ Easy to understand and write
✓ Easy to maintain and learn
✓ Portable
✘ Needs to be translated so a

CPU can understand.
✘Less memory-efficient
✘Slower than LLL programs.
✘Cannot communicate directly

with the hardware (CPU)

Remember, all code written in high-level or assembly language MUST be TRANSLATED into machine code!.

Converting from high level/assembly to machine code - Before a CPU can execute code, it must be
converted to machine code. The application used to provide this conversion is called a translator.

Assembler –
• An assembler

translates assembly
language into
machine code.

• Assembly language
has a 1:1
correspondence
with machine code.

Compiler –
• Used when source code has

been fully developed.
• Translates the whole code

in one go.
• Reports errors at end
• Once translated, it is stored

as an executable file. (.exe)
• Because this is a standalone

program, it can then be run
on other compatible
computers (with needing
software).

Interpreter
• Translates code one line at

a time.
• Debugging is easier. Each

line of code is analysed
and checked before being
executed.

• Errors reported during
translation

• Uses less memory, source
code only has to be
present one line at a time
in memory

IDE – Integrated Development
Environment – An application
used to create software for
example Python’s IDLE.
Assists the programmer

during development. An IDE
may support many languages
such as Visual Studio (VB, C#)

Features of an IDE – 1) Debugger – Used to identify, find errors. 2)
Syntax highlighting, colour co-ordination. 3) Provides an
Interpreter/Compiler. 4) Source code editor – Allows you to edit
code. 5) Auto-complete. 6) Provides access to libraries e.g. import

3
 t

yp
es

 o
f

tr
a

n
sl

a
to

r
7

Searching
8

Linear Search
Searching for a keyword or
value is the foundation of
many computer programs.
The most basic kind of
search is a linear search.
Method:
• Starts with the first item

in the data set
• Compares item to search

criteria
• If no match found, the

next item is compared
• This continues until a

match is found or until
you reach the end of the
data set

• Also known as a
sequential search as it
moves along each item
sequentially.

Binary Search – A much more efficient
method of searching a list for an item. This
list though, has to be IN ORDER!
Method:
• Split the list in half and compare the

midpoint to the item being searched
• If item is at the midpoint it has been

found!
• If it isn’t is the item being search for

higher or lower than the midpoint.
• If higher discard the first half of the list

until the midpoint.
• If lower discard the second half of the

list (midpoint to the end)
• Repeat the process again of finding the

midpoint, examining the item, if higher
or lower than item sought and
discarding items.

• The item will either be found or will not
be in the list

If we were looking for the value 9 in listOfNumbers[] below:

listOfNumbers =

Start

3 6 7 2 9 6 5 4 1

no no no no yes

Direction of search

Pseudocode
Function linearsearch(listOfNum, item)

index = -1
i = 0
found = False
while i < length(listOfNum) AND NOT found

if listOfNum[i] = item then
index = I
found = True

end if
i = i + 1

end while
return index

End Function

✓ Good for small
searches

✓ List does NOT
NEED to be
sorted

✘ Very inefficient
and slow for
large lists

If the item you are
looking for is at the
end it will take a
LONG time!

When looking for the number 1 in listOfNumbers[]

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Find midpoint which is 5. 1 is less than 5 so we discard
the second half of the list.

Find the midpoint of the new list which is 2 (using DIV
which rounds down). 1 is less than 2 so discard second half.

Find midpoint of new list which is 1. Match against item we
are searching for which is 1. ITEM FOUND!

Pseudocode
Function binarysearch(listOfNum, item)

index = -1 first = 0 found = False
last = len(listOfNum) – 1
while first <= last AND found = False

midpoint = ((first + last) DIV 2)
if listOfNum[midpoint] = item then

found = True, index = midpoint
else

if listOfNum[midpoint] < item then
first = midpoint + 1

else
last = midpoint – 1

end if
end if

end while
return index #index = -1 if key not found

✓ Very efficient, faster than linear search
as it halves the data set at each step.

✓ Fewer comparisons needed

✘ Can’t be used on an unsorted list!
✘More complicated to implement and is

inefficient on very small lists

Sorting
9

Bubble sort - An example of a

computer algorithm is bubble sort. This is a
simple algorithm used for taking a list of jumbled
up numbers and putting them into the correct
order.
Method:
1. Look at the first number in the list.
2. Compare the current number with the next number.
3. Is the next number smaller than the current

number? If so, swap the two numbers around. If
not, do not swap.

4. Move to the next number along in the list and make
this the current number.

5. Repeat from step 2 until the last number in the list
has been reached.

6. If any numbers were swapped, repeat again from
step 1.

7. If the end of the list is reached without any swaps
being made, then the list is ordered and the
algorithm can stop.

Merge sort - The idea behind this method is the insight that it is quicker to sort two small lists then

merge them together, rather sort one big list in the first place. Two stage sort.

When showing the bubble sort in action only re-write
the list of numbers/data if you have made a swap!

6 1 8 2 4

working example on list of numbers (6, 1, 8, 2, 4):
6 and 1 needs swapping. Re-
write the list after the swap.

1 6 8 2 4

1 6 2 8 4

1 6 2 4 8

1 2 6 4 8

1 2 4 6 8

6 and 8 doesn’t need swapping.

8 and 3 does need swapping.

8 and 4 needs swapping. Been
through list once. FIRST PASS!

After first pass we know last
element in correct place. (8)

Make second pass. 6 and 2
were swapped. 6 and 4 needs
swapping.

List is now sorted!

The algorithm knows the list is in order when it goes through
a pass without making any swaps!

Remember in a BUBBLE sort the computer knows the list is in order if it goes through a pass without making any swaps.

Method:
1. If the sub-list is 1 in length, then that sub-list has been fully sorted
2. If the list is more than 1 in length, then divide the unsorted list into roughly two parts. (An odd numbered

length list can't be divided equally in two)
3. Keep dividing the sub-lists until each one is only 1 item in length.
4. Now merge the sub-lists back into a list twice their size, at the same time sorting each items into order
5. Keep merging the sub-lists until the full list is complete once again.
6. So the idea is to keep dividing the list and then merge the items back again.

Stage 1 – Dividing

Keep dividing the list into sub-lists until there is
only 1 item in each sublist.

Stage 2 – Re-merging

Now merge the sub-lists back into a list twice their
size, at the same time sorting each items into order.

✓ Easy to implement, more popular
✓ Elements are swapped in place without using
additional temporary storage.

✘ Inefficient with large lists, time-consuming
✘ The more elements stored, the more processing
is required

✓ Good for sorting slow-access data e.g. tapes
✓ Efficient for sorting data that is accessed

sequentially e.g. hard disk

✘ In many implementations if the list is long, then
it needs more memory space to handle the sort
and all the sub-lists.

