Law of Surds:

$$\sqrt{a} \times \sqrt{a} = a$$

$$\sqrt{(ab)} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\frac{b}{\sqrt{a}} = \frac{b}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = \frac{b\sqrt{a}}{a}$$

$$a^{\frac{1}{b}} = \sqrt[b]{a}$$

$$81^{\frac{1}{4}} = \sqrt[4]{81} = 3$$

Quadratic Formula:

If
$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{a^{-b}}$$

$$a^{-b} = \frac{1}{a^b}$$

$$10^{-2} = \frac{1}{10^2} = \frac{1}{100}$$

Indices

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}$$

$$(a^{m})^{n} = a^{m \times n} = a^{mn}$$

$$a^0 = 1$$
 $3^0 = 1$

$$3^0 = 1$$

$$a^{\frac{1}{2}} = \sqrt{a} \qquad 16^{\frac{1}{2}} = 4$$

$$16^{\frac{1}{2}} = 4$$

$$a^{\frac{1}{b}} = \sqrt[b]{a}$$

$$81^{\frac{1}{4}} = \sqrt[4]{81} = 3$$

$$a^{\frac{b}{c}} = (\sqrt[c]{a})^b \quad 8^{\frac{4}{3}} = (\sqrt[3]{8})^4 = 16$$

$$a^{-b} = \frac{1}{a^b}$$

$$10^{-2} = \frac{1}{10^2} = \frac{1}{10}$$

Opposite angles in a

cyclic quadrilateral

add up to 180

degrees

Alternate segment

theorem

 $a + b = 180^{\circ}$ $c + d = 180^{\circ}$

Ang	les	in	a	Po	lyg	30	n	

Number of sides	Sum of interior angles	Shape
3	180°	
4	180° + 180° = 360°	
5	360° + 180° = 540°	
6	540° + 180° = 720°	
8	900° + 180° = 1080°	
10	1260° + 180° = 1440°	

Interior angle + exterior angle =180° Sum of Interior Angles = $(n-2) \times 180^{\circ}$ Each Interior Angle (of a Regular Polygon)

Sine Rule $\frac{1}{\sin A} = \frac{1}{\sin B} = \frac{1}{\sin C}$				
Cosine Rule $a^2 = b^2 + c^2 - 2bccosA$				
Area of Triangle $\frac{1}{2}absinC$				

Exterior

Trig Values

Degrees	Sin $ heta$	$\cos \theta$	Tan $ heta$
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	-

Similarity and Congruence

Length, Area and Volume

For any pair of **SIMILAR** figures corresponding **sides** are in the same ratio and corresponding angles are equal. Two objects are **CONGRUENT** if they are the **exact same size** and shape.

The cubes are similar, and the ratio of their lengths is $\frac{a}{1}$

Direct Proportion

If y is directly proportional to $x \rightarrow y \propto x$ Also written as y = kx

k is the constant of proportionality

Inverse Proportion

When one value increases as the other decreases

$$y \propto \frac{k}{x}$$

$$y \propto \frac{k}{x}$$
 $y \propto \frac{1}{x}$ $y = \frac{k}{x}$

$$y = \frac{h}{\lambda}$$

Histograms

The area of each rectangle in a histogram represents the frequency of the class

 $Frequency\ Density = Frequency \div Class\ Width$

Cumulative Frequency

"running total" – adding frequencies as you go along

Cumulative frequency

Cumulative frequency table

Cumulative frequency graph

Class	Frequency	Cumulative
Limits		Frequency
5-10	1	1
10-15	2	3
15-20	4	7
20-25	0	7
25-30	3	10
30-35	5	15
35-40	6	21

Mean from a Grouped Frequency table

We find the Average Number of Coffees per Hour by adding two new columns to our Frequency Table and using a Formula.

Cappuccinos	Freq	Interval Midpoint	Freq x Midpt
0-3	2	1.5	2 x 1.5 = 3
4-7	3	5.5	3 x 5.5 = 16.5
8-11	8	9.5	8 x 9.5 = 76
12-15	3	13.5	3 x 13.5 = 40.5
16-19	2	17.5	2 x 17.5 = 35
TOTALS	18		171

MEAN Average = Total of (Freq x Midpt) / Total Frequency = 171 / 18 = 10 cappuccinos per hour

Histograms

Height (m)	Frequency	Frequency Density
$10 < w \le 15$	45	3
$15 < w \le 30$	30	2
$30 < w \le 40$	40	4
40 < w ≤ 45	25	5

Ratio

A recipe for biscuits uses butter to sugar in the ratio 5:3 How much sugar is needed with 360 grams of butter?

Α

В

C

D

135 grams

216 grams

225 grams

600 grams

Answer: B

$$360 \div 5 = 72$$

$$72 \times 3 = 216$$
 grams

Locus

The *locus* of a point moves so that it is always a set distance (x)

from a fixed point (O)

Construction

Perpendicular: two lines drawn at right angles to each other

The product of the gradient of perpendicular lines will always be -1. If lines are perpendicular, $M_1 \times M_2 = -1$

Bisector:

Line drawn to cut another line/ angle (USING A COMPASS)

Construction of a perpendicular line:

Place the compass on point P. Using an arbitrary radius, draw arcs intersecting **line** XY at two points. Label the intersection points A and B. Place compass on A then B they will intercept at C

